Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
2 |
+
from diffusers import UniPCMultistepScheduler
|
3 |
+
from diffusers.utils import load_image
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Constants
|
8 |
+
low_threshold = 100
|
9 |
+
high_threshold = 200
|
10 |
+
|
11 |
+
# Models
|
12 |
+
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
13 |
+
controlnet = ControlNetModel.from_pretrained(
|
14 |
+
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
|
15 |
+
)
|
16 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
17 |
+
"andite/anything-v4.0", controlnet=controlnet, torch_dtype=torch.float16
|
18 |
+
)
|
19 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
20 |
+
|
21 |
+
# This command loads the individual model components on GPU on-demand. So, we don't
|
22 |
+
# need to explicitly call pipe.to("cuda").
|
23 |
+
pipe.enable_model_cpu_offload()
|
24 |
+
|
25 |
+
# Generator seed,
|
26 |
+
generator = torch.manual_seed(0)
|
27 |
+
|
28 |
+
def get_pose(image):
|
29 |
+
return pose_model(image)
|
30 |
+
|
31 |
+
|
32 |
+
def generate_images(image, prompt):
|
33 |
+
pose = get_pose(image)
|
34 |
+
output = pipe(
|
35 |
+
prompt,
|
36 |
+
pose,
|
37 |
+
generator=generator,
|
38 |
+
num_images_per_prompt=3
|
39 |
+
)
|
40 |
+
return output.images
|
41 |
+
|
42 |
+
|
43 |
+
gr.Interface(
|
44 |
+
generate_images,
|
45 |
+
inputs=[
|
46 |
+
gr.Image(type="pil"),
|
47 |
+
gr.Textbox(
|
48 |
+
label="Enter your prompt",
|
49 |
+
max_lines=1,
|
50 |
+
placeholder="best quality, extremely detailed",
|
51 |
+
),
|
52 |
+
],
|
53 |
+
outputs=gr.Gallery().style(grid=[2], height="auto"),
|
54 |
+
title="Generate controlled outputs with ControlNet and Stable Diffusion. ",
|
55 |
+
description="This Space uses pose estimated lines as the additional conditioning.",
|
56 |
+
examples=[["yoga1.jpeg", "best quality, extremely detailed"]],
|
57 |
+
allow_flagging=False,
|
58 |
+
).launch(enable_queue=True)
|
59 |
+
|
60 |
+
|