RemBG_super / rembg /sessions /u2net_cloth_seg.py
KenjieDec's picture
Update
5f57808
raw
history blame
2.2 kB
import os
from typing import List
import numpy as np
import pooch
from PIL import Image
from PIL.Image import Image as PILImage
from scipy.special import log_softmax
from .base import BaseSession
pallete1 = [
0,
0,
0,
255,
255,
255,
0,
0,
0,
0,
0,
0,
]
pallete2 = [
0,
0,
0,
0,
0,
0,
255,
255,
255,
0,
0,
0,
]
pallete3 = [
0,
0,
0,
0,
0,
0,
0,
0,
0,
255,
255,
255,
]
class Unet2ClothSession(BaseSession):
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]:
ort_outs = self.inner_session.run(
None,
self.normalize(
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (768, 768)
),
)
pred = ort_outs
pred = log_softmax(pred[0], 1)
pred = np.argmax(pred, axis=1, keepdims=True)
pred = np.squeeze(pred, 0)
pred = np.squeeze(pred, 0)
mask = Image.fromarray(pred.astype("uint8"), mode="L")
mask = mask.resize(img.size, Image.LANCZOS)
masks = []
mask1 = mask.copy()
mask1.putpalette(pallete1)
mask1 = mask1.convert("RGB").convert("L")
masks.append(mask1)
mask2 = mask.copy()
mask2.putpalette(pallete2)
mask2 = mask2.convert("RGB").convert("L")
masks.append(mask2)
mask3 = mask.copy()
mask3.putpalette(pallete3)
mask3 = mask3.convert("RGB").convert("L")
masks.append(mask3)
return masks
@classmethod
def download_models(cls, *args, **kwargs):
fname = f"{cls.name()}.onnx"
pooch.retrieve(
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx",
None
if cls.checksum_disabled(*args, **kwargs)
else "md5:2434d1f3cb744e0e49386c906e5a08bb",
fname=fname,
path=cls.u2net_home(*args, **kwargs),
progressbar=True,
)
return os.path.join(cls.u2net_home(), fname)
@classmethod
def name(cls, *args, **kwargs):
return "u2net_cloth_seg"