Spaces:
Sleeping
Sleeping
File size: 5,738 Bytes
3a6f1f2 15215aa af295ba 3a6f1f2 bb12c15 3a6f1f2 af295ba 3a6f1f2 af295ba 3a6f1f2 af295ba 5f57808 af295ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import io
from enum import Enum
from typing import Any, List, Optional, Tuple, Union
import numpy as np
from cv2 import (
BORDER_DEFAULT,
MORPH_ELLIPSE,
MORPH_OPEN,
GaussianBlur,
getStructuringElement,
morphologyEx,
)
from PIL import Image, ImageOps
from PIL.Image import Image as PILImage
from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from pymatting.util.util import stack_images
from scipy.ndimage import binary_erosion
from .session_factory import new_session
from .sessions import sessions_class
from .sessions.base import BaseSession
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
class ReturnType(Enum):
BYTES = 0
PILLOW = 1
NDARRAY = 2
def alpha_matting_cutout(
img: PILImage,
mask: PILImage,
foreground_threshold: int,
background_threshold: int,
erode_structure_size: int,
) -> PILImage:
if img.mode == "RGBA" or img.mode == "CMYK":
img = img.convert("RGB")
img = np.asarray(img)
mask = np.asarray(mask)
is_foreground = mask > foreground_threshold
is_background = mask < background_threshold
structure = None
if erode_structure_size > 0:
structure = np.ones(
(erode_structure_size, erode_structure_size), dtype=np.uint8
)
is_foreground = binary_erosion(is_foreground, structure=structure)
is_background = binary_erosion(is_background, structure=structure, border_value=1)
trimap = np.full(mask.shape, dtype=np.uint8, fill_value=128)
trimap[is_foreground] = 255
trimap[is_background] = 0
img_normalized = img / 255.0
trimap_normalized = trimap / 255.0
alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
foreground = estimate_foreground_ml(img_normalized, alpha)
cutout = stack_images(foreground, alpha)
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
cutout = Image.fromarray(cutout)
return cutout
def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
empty = Image.new("RGBA", (img.size), 0)
cutout = Image.composite(img, empty, mask)
return cutout
def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
pivot = imgs.pop(0)
for im in imgs:
pivot = get_concat_v(pivot, im)
return pivot
def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
dst.paste(img1, (0, 0))
dst.paste(img2, (0, img1.height))
return dst
def post_process(mask: np.ndarray) -> np.ndarray:
"""
Post Process the mask for a smooth boundary by applying Morphological Operations
Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
args:
mask: Binary Numpy Mask
"""
mask = morphologyEx(mask, MORPH_OPEN, kernel)
mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
mask = np.where(mask < 127, 0, 255).astype(np.uint8) # convert again to binary
return mask
def apply_background_color(img: PILImage, color: Tuple[int, int, int, int]) -> PILImage:
r, g, b, a = color
colored_image = Image.new("RGBA", img.size, (r, g, b, a))
colored_image.paste(img, mask=img)
return colored_image
def fix_image_orientation(img: PILImage) -> PILImage:
return ImageOps.exif_transpose(img)
def download_models() -> None:
for session in sessions_class:
session.download_models()
def remove(
data: Union[bytes, PILImage, np.ndarray],
alpha_matting: bool = False,
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10,
session: Optional[BaseSession] = None,
only_mask: bool = False,
post_process_mask: bool = False,
bgcolor: Optional[Tuple[int, int, int, int]] = None,
*args: Optional[Any],
**kwargs: Optional[Any]
) -> Union[bytes, PILImage, np.ndarray]:
if isinstance(data, PILImage):
return_type = ReturnType.PILLOW
img = data
elif isinstance(data, bytes):
return_type = ReturnType.BYTES
img = Image.open(io.BytesIO(data))
elif isinstance(data, np.ndarray):
return_type = ReturnType.NDARRAY
img = Image.fromarray(data)
else:
raise ValueError("Input type {} is not supported.".format(type(data)))
# Fix image orientation
img = fix_image_orientation(img)
if session is None:
session = new_session("u2net", *args, **kwargs)
masks = session.predict(img, *args, **kwargs)
cutouts = []
for mask in masks:
if post_process_mask:
mask = Image.fromarray(post_process(np.array(mask)))
if only_mask:
cutout = mask
elif alpha_matting:
try:
cutout = alpha_matting_cutout(
img,
mask,
alpha_matting_foreground_threshold,
alpha_matting_background_threshold,
alpha_matting_erode_size,
)
except ValueError:
cutout = naive_cutout(img, mask)
else:
cutout = naive_cutout(img, mask)
cutouts.append(cutout)
cutout = img
if len(cutouts) > 0:
cutout = get_concat_v_multi(cutouts)
if bgcolor is not None and not only_mask:
cutout = apply_background_color(cutout, bgcolor)
if ReturnType.PILLOW == return_type:
return cutout
if ReturnType.NDARRAY == return_type:
return np.asarray(cutout)
bio = io.BytesIO()
cutout.save(bio, "PNG")
bio.seek(0)
return bio.read()
|