|
import gradio as gr |
|
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel |
|
import torch |
|
|
|
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') |
|
torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png') |
|
torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg') |
|
|
|
git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-coco") |
|
git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") |
|
|
|
git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-coco") |
|
git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco") |
|
|
|
blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") |
|
blip_model_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") |
|
|
|
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
|
|
vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
git_model_base.to(device) |
|
blip_model_base.to(device) |
|
git_model_large.to(device) |
|
blip_model_large.to(device) |
|
vitgpt_model.to(device) |
|
|
|
def generate_caption(processor, model, image, tokenizer=None): |
|
inputs = processor(images=image, return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) |
|
|
|
if tokenizer is not None: |
|
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
else: |
|
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
return generated_caption |
|
|
|
|
|
def generate_captions(image): |
|
caption_git_base = generate_caption(git_processor_base, git_model_base, image) |
|
|
|
caption_git_large = generate_caption(git_processor_large, git_model_large, image) |
|
|
|
caption_blip_base = generate_caption(blip_processor_base, blip_model_base, image) |
|
|
|
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image) |
|
|
|
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer) |
|
|
|
return caption_git_base, caption_git_large, caption_blip_base, caption_blip_large, caption_vitgpt |
|
|
|
|
|
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]] |
|
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-base"), gr.outputs.Textbox(label="Caption generated by GIT-large"), gr.outputs.Textbox(label="Caption generated by BLIP-base"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by ViT+GPT-2")] |
|
|
|
title = "Interactive demo: comparing image captioning models" |
|
description = "Gradio Demo to compare GIT, BLIP and ViT+GPT2, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>" |
|
|
|
interface = gr.Interface(fn=generate_captions, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=outputs, |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
article=article, |
|
enable_queue=True) |
|
interface.launch(debug=True) |