Spaces:
Running
on
A10G
Running
on
A10G
# import all the libraries | |
import math | |
import numpy as np | |
import scipy | |
from PIL import Image | |
import torch | |
import torchvision.transforms as tforms | |
from diffusers import DiffusionPipeline, UNet2DConditionModel, DDIMScheduler, DDIMInverseScheduler | |
from diffusers.models import AutoencoderKL | |
import gradio as gr | |
# load SDXL pipeline | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
unet = UNet2DConditionModel.from_pretrained("mhdang/dpo-sdxl-text2image-v1", subfolder="unet", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, vae=vae, torch_dtype=torch.float16) | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to("cuda") | |
# watermarking helper functions. paraphrased from the reference impl of arXiv:2305.20030 | |
def circle_mask(size=128, r=16, x_offset=0, y_offset=0): | |
x0 = y0 = size // 2 | |
x0 += x_offset | |
y0 += y_offset | |
y, x = np.ogrid[:size, :size] | |
y = y[::-1] | |
return ((x - x0)**2 + (y-y0)**2)<= r**2 | |
def get_pattern(shape, w_seed=999999): | |
g = torch.Generator(device=pipe.device) | |
g.manual_seed(w_seed) | |
gt_init = pipe.prepare_latents(1, pipe.unet.in_channels, | |
1024, 1024, | |
pipe.unet.dtype, pipe.device, g) | |
gt_patch = torch.fft.fftshift(torch.fft.fft2(gt_init), dim=(-1, -2)) | |
# ring pattern. paper found this to be effective | |
gt_patch_tmp = gt_patch.clone().detach() | |
for i in range(shape[-1] // 2, 0, -1): | |
tmp_mask = circle_mask(gt_init.shape[-1], r=i) | |
tmp_mask = torch.tensor(tmp_mask) | |
for j in range(gt_patch.shape[1]): | |
gt_patch[:, j, tmp_mask] = gt_patch_tmp[0, j, 0, i].item() | |
return gt_patch | |
def transform_img(image): | |
tform = tforms.Compose([tforms.Resize(1024),tforms.CenterCrop(1024),tforms.ToTensor()]) | |
image = tform(image) | |
return 2.0 * image - 1.0 | |
# hyperparameters | |
shape = (1, 4, 128, 128) | |
w_seed = 7433 # TREE :) | |
w_channel = 0 | |
w_radius = 16 # the suggested r from section 4.4 of paper | |
# get w_key and w_mask | |
np_mask = circle_mask(shape[-1], r=w_radius) | |
torch_mask = torch.tensor(np_mask).to(pipe.device) | |
w_mask = torch.zeros(shape, dtype=torch.bool).to(pipe.device) | |
w_mask[:, w_channel] = torch_mask | |
w_key = get_pattern(shape, w_seed=w_seed).to(pipe.device) | |
def get_noise(): | |
# moved w_key and w_mask to globals | |
# inject watermark | |
init_latents = pipe.prepare_latents(1, pipe.unet.in_channels, | |
1024, 1024, | |
pipe.unet.dtype, pipe.device, None) | |
init_latents_fft = torch.fft.fftshift(torch.fft.fft2(init_latents), dim=(-1, -2)) | |
init_latents_fft[w_mask] = w_key[w_mask].clone() | |
init_latents = torch.fft.ifft2(torch.fft.ifftshift(init_latents_fft, dim=(-1, -2))).real | |
# hot fix to prevent out of bounds values. will "properly" fix this later | |
init_latents[init_latents == float("Inf")] = 4 | |
init_latents[init_latents == float("-Inf")] = -4 | |
return init_latents | |
def detect(image): | |
# invert scheduler | |
curr_scheduler = pipe.scheduler | |
pipe.scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) | |
# ddim inversion | |
img = transform_img(image).unsqueeze(0).to(pipe.unet.dtype).to(pipe.device) | |
image_latents = pipe.vae.encode(img).latent_dist.mode() * 0.13025 | |
inverted_latents = pipe(prompt="", latents=image_latents, guidance_scale=1, num_inference_steps=50, output_type="latent") | |
inverted_latents = inverted_latents.images | |
# calculate p-value instead of detection threshold. more rigorous, plus we can do a non-boolean output | |
inverted_latents_fft = torch.fft.fftshift(torch.fft.fft2(inverted_latents), dim=(-1, -2))[w_mask].flatten() | |
target = w_key[w_mask].flatten() | |
inverted_latents_fft = torch.concatenate([inverted_latents_fft.real, inverted_latents_fft.imag]) | |
target = torch.concatenate([target.real, target.imag]) | |
sigma = inverted_latents_fft.std() | |
lamda = (target ** 2 / sigma ** 2).sum().item() | |
x = (((inverted_latents_fft - target) / sigma) ** 2).sum().item() | |
p_value = scipy.stats.ncx2.cdf(x=x, df=len(target), nc=lamda) | |
# revert scheduler | |
pipe.scheduler = curr_scheduler | |
if p_value == 0: | |
return 1.0 | |
else: | |
return max(0.0, 1-1/math.log(5/p_value,10)) | |
def generate(prompt): | |
return pipe(prompt=prompt, negative_prompt="monochrome", num_inference_steps=50, latents=get_noise()).images[0] | |
# optimize for speed | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
print(detect(generate("an astronaut riding a green horse"))) # warmup after jit | |
# actual gradio demo | |
def manager(input, progress=gr.Progress(track_tqdm=True)): # to prevent the queue from overloading | |
if type(input) == str: | |
return generate(input) | |
elif type(input) == np.ndarray: | |
image = Image.fromarray(input) | |
percent = detect(image) | |
return {"watermarked": percent, "not_watermarked": 1.0-percent} | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green",secondary_hue="green", font=gr.themes.GoogleFont("Fira Sans"))) as app: | |
with gr.Row(): | |
gr.HTML('<center><p>Bad actors are using generative AI to destroy the livelihoods of real artists. We need transparency now.</p><h1><span style="font-size:1.5em">Introducing Dendrokronos 🌳</span></h1></center>') | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("# Generate\nType a prompt and hit Go. Dendrokronos will generate an invisibly-watermarked image. \nYou can click the download button to save the finished image. Try it with the detector.") | |
with gr.Group(): | |
with gr.Row(): | |
gen_in = gr.Textbox(max_lines=1, placeholder='try "a majestic tree at sunset, oil painting"', show_label=False, scale=4) | |
gen_btn = gr.Button("Go", variant="primary", scale=0) | |
gen_out = gr.Image(interactive=False, show_label=False) | |
gen_btn.click(fn=manager, inputs=gen_in, outputs=gen_out) | |
with gr.Column(): | |
gr.Markdown("# Detect\nUpload an image and hit Detect. Dendrokronos will predict the probability it was watermarked. \nNote: Dendrokronos can only detect its own watermark. It won't detect other AIs, such as DALL-E.") | |
det_out = gr.Label(show_label=False) | |
with gr.Group(): | |
det_btn = gr.Button("Detect", variant="primary") | |
det_in = gr.Image(interactive=True, sources=["upload","clipboard"], show_label=False) | |
det_btn.click(fn=manager, inputs=det_in, outputs=det_out) | |
with gr.Row(): | |
gr.HTML('<center><h1> </h1>Acknowledgements: Dendrokronos uses <a href="https://huggingface.co/mhdang/dpo-sdxl-text2image-v1">SDXL DPO 1.0</a> for the underlying image generation and <a href="https://arxiv.org/abs/2305.20030">an algorithm by UMD researchers</a> for the watermark technology.<br />Dendrokronos is a project by Devin Gulliver.</center>') | |
app.queue() | |
app.launch(show_api=False) | |