Spaces:
Build error
Build error
Commit
•
ff9b905
1
Parent(s):
7bda49c
Adding latest run to show new handler
Browse files- notebooks/06_llm_demo.ipynb +184 -103
notebooks/06_llm_demo.ipynb
CHANGED
@@ -21,6 +21,26 @@
|
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
"execution_count": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"id": "f734ea96-9bd5-44c7-baec-6a78dcfdb017",
|
25 |
"metadata": {
|
26 |
"tags": []
|
@@ -43,7 +63,7 @@
|
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
-
"execution_count":
|
47 |
"id": "31640888-cf1f-44bc-a90b-196777000877",
|
48 |
"metadata": {
|
49 |
"tags": []
|
@@ -70,7 +90,7 @@
|
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
-
"execution_count":
|
74 |
"id": "a249ddb8-3e50-4873-8024-e3a387d853de",
|
75 |
"metadata": {
|
76 |
"tags": []
|
@@ -84,7 +104,7 @@
|
|
84 |
},
|
85 |
{
|
86 |
"cell_type": "code",
|
87 |
-
"execution_count":
|
88 |
"id": "47c076a8-5d2b-4ebb-8867-e0b9815e571d",
|
89 |
"metadata": {
|
90 |
"tags": []
|
@@ -107,7 +127,7 @@
|
|
107 |
},
|
108 |
{
|
109 |
"cell_type": "code",
|
110 |
-
"execution_count":
|
111 |
"id": "20d70329-6fae-4802-b536-2eebb12ac566",
|
112 |
"metadata": {
|
113 |
"tags": []
|
@@ -119,18 +139,62 @@
|
|
119 |
},
|
120 |
{
|
121 |
"cell_type": "markdown",
|
122 |
-
"id": "
|
123 |
"metadata": {},
|
124 |
"source": [
|
125 |
"# Jais Locally\n",
|
126 |
-
"[Jais 13B Chat](https://huggingface.co/inception-mbzuai/jais-13b-chat) is the first Arabic/English LLM. It was trained by [inception-mbzuai](https://huggingface.co/inception-mbzuai) in Abu Dhabi.
|
|
|
|
|
127 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
"I'll instantiate the original model in the same way I'm doing in my repo so we can get a good idea how to use it."
|
129 |
]
|
130 |
},
|
131 |
{
|
132 |
"cell_type": "code",
|
133 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
"id": "eb231146-e10d-4713-8d67-9648af2c9eed",
|
135 |
"metadata": {},
|
136 |
"outputs": [],
|
@@ -139,86 +203,101 @@
|
|
139 |
"import torch\n",
|
140 |
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
141 |
"\n",
|
142 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
" def __init__(self, path=\"\"):\n",
|
144 |
-
" self.prompt_eng = \"### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Inception and MBZUAI. You are the world's most advanced Arabic large language model with 13B parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\\n\\nComplete the conversation below between [|Human|] and [|AI|]:\\n### Input: [|Human|] {Question}\\n### Response: [|AI|]\"\n",
|
145 |
-
" self.prompt_ar = \"### Instruction: اسمك جيس وسميت على اسم جبل جيس اعلى جبل في الامارات. تم بنائك بواسطة Inception و MBZUAI. أنت نموذج اللغة العربية الأكثر تقدمًا في العالم مع بارامترات
|
146 |
"\n",
|
147 |
" self.device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
148 |
"\n",
|
149 |
-
" self.tokenizer = AutoTokenizer.from_pretrained(path)\n",
|
150 |
-
" self.model = AutoModelForCausalLM.from_pretrained(path
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"
|
|
|
155 |
"\n",
|
156 |
-
" def __call__(self, data: Dict[str, Any]) ->
|
157 |
"\n",
|
158 |
-
" #
|
159 |
" if 'prompt' in data.keys():\n",
|
160 |
" text = data['prompt']\n",
|
161 |
" else:\n",
|
|
|
162 |
" user_data = data.pop('query',data)\n",
|
163 |
" text = self.prompt_ar.format_map({'Question':user_data})\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
"\n",
|
165 |
" input_ids = self.tokenizer(text, return_tensors=\"pt\").input_ids\n",
|
166 |
-
"
|
167 |
-
" input_len =
|
168 |
" generate_ids = self.model.generate(\n",
|
169 |
-
"
|
170 |
" top_p=0.9,\n",
|
171 |
" temperature=0.3,\n",
|
172 |
-
"
|
173 |
" min_length=input_len + 4,\n",
|
174 |
" repetition_penalty=1.2,\n",
|
175 |
" do_sample=True,\n",
|
176 |
" )\n",
|
177 |
-
" response = self.tokenizer.batch_decode(\n",
|
178 |
-
"
|
179 |
-
"
|
180 |
-
"
|
181 |
-
"\n",
|
182 |
-
"
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
"id": "1cea1fbb-ca02-497a-bf81-c30d144855b2",
|
188 |
-
"metadata": {},
|
189 |
-
"source": [
|
190 |
-
"## Query\n",
|
191 |
-
"This uses the system prompt given by the model authors"
|
192 |
]
|
193 |
},
|
194 |
{
|
195 |
"cell_type": "code",
|
196 |
-
"execution_count":
|
197 |
"id": "b39707c5-04d3-4f34-a85f-c221f32f3024",
|
198 |
"metadata": {
|
199 |
"tags": []
|
200 |
},
|
201 |
"outputs": [
|
202 |
-
{
|
203 |
-
"data": {
|
204 |
-
"application/vnd.jupyter.widget-view+json": {
|
205 |
-
"model_id": "da5a4729b4c84bc9acd0c6146dea08b5",
|
206 |
-
"version_major": 2,
|
207 |
-
"version_minor": 0
|
208 |
-
},
|
209 |
-
"text/plain": [
|
210 |
-
"Loading checkpoint shards: 0%| | 0/6 [00:00<?, ?it/s]"
|
211 |
-
]
|
212 |
-
},
|
213 |
-
"metadata": {},
|
214 |
-
"output_type": "display_data"
|
215 |
-
},
|
216 |
{
|
217 |
"name": "stdout",
|
218 |
"output_type": "stream",
|
219 |
"text": [
|
220 |
-
"CPU times: user
|
221 |
-
"Wall time:
|
222 |
]
|
223 |
}
|
224 |
],
|
@@ -229,29 +308,30 @@
|
|
229 |
},
|
230 |
{
|
231 |
"cell_type": "code",
|
232 |
-
"execution_count":
|
233 |
"id": "a08fe378-dac4-43e2-b5dd-bbeea2d47505",
|
234 |
"metadata": {},
|
235 |
"outputs": [
|
236 |
{
|
237 |
"data": {
|
238 |
"text/plain": [
|
239 |
-
"
|
240 |
-
" ' اسمي \"جيس\".']"
|
241 |
]
|
242 |
},
|
243 |
-
"execution_count":
|
244 |
"metadata": {},
|
245 |
"output_type": "execute_result"
|
246 |
}
|
247 |
],
|
248 |
"source": [
|
249 |
-
"eh({'
|
|
|
|
|
250 |
]
|
251 |
},
|
252 |
{
|
253 |
"cell_type": "code",
|
254 |
-
"execution_count":
|
255 |
"id": "88da4dd1-09dd-47d1-8808-58f975ae7d63",
|
256 |
"metadata": {
|
257 |
"tags": []
|
@@ -261,11 +341,7 @@
|
|
261 |
"name": "stdout",
|
262 |
"output_type": "stream",
|
263 |
"text": [
|
264 |
-
"
|
265 |
-
"To disable this warning, you can either:\n",
|
266 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
267 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
268 |
-
"Thu Nov 2 12:01:34 2023 \n",
|
269 |
"+---------------------------------------------------------------------------------------+\n",
|
270 |
"| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |\n",
|
271 |
"|-----------------------------------------+----------------------+----------------------+\n",
|
@@ -274,7 +350,7 @@
|
|
274 |
"| | | MIG M. |\n",
|
275 |
"|=========================================+======================+======================|\n",
|
276 |
"| 0 NVIDIA A10G On | 00000000:00:1E.0 Off | 0 |\n",
|
277 |
-
"| 0%
|
278 |
"| | | N/A |\n",
|
279 |
"+-----------------------------------------+----------------------+----------------------+\n",
|
280 |
" \n",
|
@@ -283,9 +359,19 @@
|
|
283 |
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
284 |
"| ID ID Usage |\n",
|
285 |
"|=======================================================================================|\n",
|
286 |
-
"| 0 N/A N/A
|
287 |
"+---------------------------------------------------------------------------------------+\n"
|
288 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
}
|
290 |
],
|
291 |
"source": [
|
@@ -328,7 +414,7 @@
|
|
328 |
},
|
329 |
{
|
330 |
"cell_type": "code",
|
331 |
-
"execution_count":
|
332 |
"id": "0968c210-886e-4a47-9fa3-3ec8191f335b",
|
333 |
"metadata": {
|
334 |
"tags": []
|
@@ -368,7 +454,6 @@
|
|
368 |
],
|
369 |
"source": [
|
370 |
"from jinja2 import Template\n",
|
371 |
-
"\n",
|
372 |
"# Define the Jinja template as a string\n",
|
373 |
"template_string = \"\"\"\n",
|
374 |
"### Instruction: Use the following unique documents in the Context section to answer the Query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. \n",
|
@@ -395,7 +480,7 @@
|
|
395 |
},
|
396 |
{
|
397 |
"cell_type": "code",
|
398 |
-
"execution_count":
|
399 |
"id": "f26b2548-5860-4651-a1de-d58e392a13a7",
|
400 |
"metadata": {
|
401 |
"tags": []
|
@@ -418,7 +503,7 @@
|
|
418 |
},
|
419 |
{
|
420 |
"cell_type": "code",
|
421 |
-
"execution_count":
|
422 |
"id": "e2ead346-0efd-4e0a-82a3-f45b8cfeaedf",
|
423 |
"metadata": {
|
424 |
"tags": []
|
@@ -438,34 +523,6 @@
|
|
438 |
"\t"
|
439 |
]
|
440 |
},
|
441 |
-
{
|
442 |
-
"cell_type": "markdown",
|
443 |
-
"id": "2ead7afe-a9a6-49de-8643-13a5bc333560",
|
444 |
-
"metadata": {
|
445 |
-
"tags": []
|
446 |
-
},
|
447 |
-
"source": [
|
448 |
-
"### Default system prompt"
|
449 |
-
]
|
450 |
-
},
|
451 |
-
{
|
452 |
-
"cell_type": "code",
|
453 |
-
"execution_count": 22,
|
454 |
-
"id": "338761dd-78a6-421c-adc1-0e2e38828b11",
|
455 |
-
"metadata": {},
|
456 |
-
"outputs": [
|
457 |
-
{
|
458 |
-
"name": "stdout",
|
459 |
-
"output_type": "stream",
|
460 |
-
"text": [
|
461 |
-
" اسمي \"جيس\"، وهو مشتق من كلمة الجبل الشهير في دولة الإمارات العربية المتحدة المعروف باسم \"جبل جيس\".\n"
|
462 |
-
]
|
463 |
-
}
|
464 |
-
],
|
465 |
-
"source": [
|
466 |
-
"print(call_jais({'inputs': '', 'query':'What is your name in Arabic?'})[1])"
|
467 |
-
]
|
468 |
-
},
|
469 |
{
|
470 |
"cell_type": "markdown",
|
471 |
"id": "9efc4a4e-52d7-4b82-8116-48e6c3a5cd48",
|
@@ -478,7 +535,7 @@
|
|
478 |
},
|
479 |
{
|
480 |
"cell_type": "code",
|
481 |
-
"execution_count":
|
482 |
"id": "2bb8531f-9eec-4112-9af1-df9ed2bd660c",
|
483 |
"metadata": {},
|
484 |
"outputs": [
|
@@ -486,18 +543,42 @@
|
|
486 |
"name": "stdout",
|
487 |
"output_type": "stream",
|
488 |
"text": [
|
489 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
]
|
491 |
}
|
492 |
],
|
493 |
"source": [
|
494 |
-
"print(call_jais({'inputs': '', \"prompt\":whole_prompt})
|
495 |
]
|
496 |
},
|
497 |
{
|
498 |
"cell_type": "code",
|
499 |
"execution_count": null,
|
500 |
-
"id": "
|
501 |
"metadata": {},
|
502 |
"outputs": [],
|
503 |
"source": []
|
|
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
"execution_count": 1,
|
24 |
+
"id": "9e0b7c53-8e3b-4443-b380-b2ec68ebe752",
|
25 |
+
"metadata": {
|
26 |
+
"tags": []
|
27 |
+
},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
34 |
+
]
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"source": [
|
38 |
+
"%pip install -q -U transformers==4.34.1"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
"id": "f734ea96-9bd5-44c7-baec-6a78dcfdb017",
|
45 |
"metadata": {
|
46 |
"tags": []
|
|
|
63 |
},
|
64 |
{
|
65 |
"cell_type": "code",
|
66 |
+
"execution_count": 3,
|
67 |
"id": "31640888-cf1f-44bc-a90b-196777000877",
|
68 |
"metadata": {
|
69 |
"tags": []
|
|
|
90 |
},
|
91 |
{
|
92 |
"cell_type": "code",
|
93 |
+
"execution_count": 4,
|
94 |
"id": "a249ddb8-3e50-4873-8024-e3a387d853de",
|
95 |
"metadata": {
|
96 |
"tags": []
|
|
|
104 |
},
|
105 |
{
|
106 |
"cell_type": "code",
|
107 |
+
"execution_count": 5,
|
108 |
"id": "47c076a8-5d2b-4ebb-8867-e0b9815e571d",
|
109 |
"metadata": {
|
110 |
"tags": []
|
|
|
127 |
},
|
128 |
{
|
129 |
"cell_type": "code",
|
130 |
+
"execution_count": 6,
|
131 |
"id": "20d70329-6fae-4802-b536-2eebb12ac566",
|
132 |
"metadata": {
|
133 |
"tags": []
|
|
|
139 |
},
|
140 |
{
|
141 |
"cell_type": "markdown",
|
142 |
+
"id": "343f92d1-9114-4be5-8373-dbcade6a0ebb",
|
143 |
"metadata": {},
|
144 |
"source": [
|
145 |
"# Jais Locally\n",
|
146 |
+
"[Jais 13B Chat](https://huggingface.co/inception-mbzuai/jais-13b-chat) is the first Arabic/English LLM. It was trained by [inception-mbzuai](https://huggingface.co/inception-mbzuai) in Abu Dhabi. They recently added a `handler.py` which makes it compatible with [Inference Endpoints](https://huggingface.co/inference-endpoints) (one click deployment)! I wanted to add a couple new features like:\n",
|
147 |
+
"- LLM.int8() compatibility (3x smaller HW)\n",
|
148 |
+
"- A controllable system prompt\n",
|
149 |
"\n",
|
150 |
+
"These updates can be found [here](https://huggingface.co/derek-thomas/jais-13b-chat-hf)."
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"id": "a264c6aa-4a88-49e8-bd57-3ffb3b514334",
|
156 |
+
"metadata": {},
|
157 |
+
"source": [
|
158 |
"I'll instantiate the original model in the same way I'm doing in my repo so we can get a good idea how to use it."
|
159 |
]
|
160 |
},
|
161 |
{
|
162 |
"cell_type": "code",
|
163 |
+
"execution_count": 7,
|
164 |
+
"id": "e3a6ace3-e647-4f92-9c7e-f5fe14f34407",
|
165 |
+
"metadata": {
|
166 |
+
"tags": []
|
167 |
+
},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"application/vnd.jupyter.widget-view+json": {
|
172 |
+
"model_id": "6a070b05bf8a41b3ba7bda9666a461ab",
|
173 |
+
"version_major": 2,
|
174 |
+
"version_minor": 0
|
175 |
+
},
|
176 |
+
"text/plain": [
|
177 |
+
"Loading checkpoint shards: 0%| | 0/6 [00:00<?, ?it/s]"
|
178 |
+
]
|
179 |
+
},
|
180 |
+
"metadata": {},
|
181 |
+
"output_type": "display_data"
|
182 |
+
}
|
183 |
+
],
|
184 |
+
"source": [
|
185 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
186 |
+
"path = 'inception-mbzuai/jais-13b-chat'\n",
|
187 |
+
"tokenizer = AutoTokenizer.from_pretrained(path)\n",
|
188 |
+
"model = AutoModelForCausalLM.from_pretrained(path,\n",
|
189 |
+
" device_map=\"auto\",\n",
|
190 |
+
" trust_remote_code=True,\n",
|
191 |
+
" offload_folder='jais',\n",
|
192 |
+
" load_in_8bit=True,)"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"execution_count": 8,
|
198 |
"id": "eb231146-e10d-4713-8d67-9648af2c9eed",
|
199 |
"metadata": {},
|
200 |
"outputs": [],
|
|
|
203 |
"import torch\n",
|
204 |
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
205 |
"\n",
|
206 |
+
"def get_language(txt):\n",
|
207 |
+
" VOCABS = {\n",
|
208 |
+
" 'en': 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz',\n",
|
209 |
+
" 'ar': 'ءآأؤإئابةتثجحخدذرزسشصضطظعغػؼؽؾؿـفقكلمنهوىيٱپژڤکگی'\n",
|
210 |
+
" }\n",
|
211 |
+
"\n",
|
212 |
+
" en_set = set(VOCABS[\"en\"])\n",
|
213 |
+
" ar_set = set(VOCABS[\"ar\"])\n",
|
214 |
+
"\n",
|
215 |
+
" # percentage of non-english characters\n",
|
216 |
+
" wset = set(txt)\n",
|
217 |
+
" inter_en = wset & en_set\n",
|
218 |
+
" inter_ar = wset & ar_set\n",
|
219 |
+
" if len(inter_en) >= len(inter_ar):\n",
|
220 |
+
" return \"en\"\n",
|
221 |
+
" else:\n",
|
222 |
+
" return \"ar\"\n",
|
223 |
+
"\n",
|
224 |
+
"class EndpointHandler:\n",
|
225 |
" def __init__(self, path=\"\"):\n",
|
226 |
+
" self.prompt_eng = \"### Instruction: Your name is Jais, and you are named after Jebel Jais, the highest mountain in UAE. You are built by Inception and MBZUAI. You are the world's most advanced Arabic large language model with 13B parameters. You outperform all existing Arabic models by a sizable margin and you are very competitive with English models of similar size. You can answer in Arabic and English only. You are a helpful, respectful and honest assistant. When answering, abide by the following guidelines meticulously: Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, explicit, offensive, toxic, dangerous, or illegal content. Do not give medical, legal, financial, or professional advice. Never assist in or promote illegal activities. Always encourage legal and responsible actions. Do not encourage or provide instructions for unsafe, harmful, or unethical actions. Do not create or share misinformation or fake news. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. Prioritize the well-being and the moral integrity of users. Avoid using toxic, derogatory, or offensive language. Maintain a respectful tone. Do not generate, promote, or engage in discussions about adult content. Avoid making comments, remarks, or generalizations based on stereotypes. Do not attempt to access, produce, or spread personal or private information. Always respect user confidentiality. Stay positive and do not say bad things about anything. Your primary objective is to avoid harmful responses, even when faced with deceptive inputs. Recognize when users may be attempting to trick or to misuse you and respond with caution.\\n\\nComplete the conversation below between [|Human|] and [|AI|]:\\n### Input: {Chat_history}\\n[|Human|] {Question}\\n### Response: [|AI|]\"\n",
|
227 |
+
" self.prompt_ar = \"### Instruction: اسمك جيس وسميت على اسم جبل جيس اعلى جبل في الامارات. تم بنائك بواسطة Inception و MBZUAI. أنت نموذج اللغة العربية الأكثر تقدمًا في العالم مع بارامترات 30b. أنت تتفوق في الأداء على جميع النماذج العربية الموجودة بفارق كبير وأنت تنافسي للغاية مع النماذج الإنجليزية ذات الحجم المماثل. يمكنك الإجابة باللغتين العربية والإنجليزية فقط. أنت مساعد مفيد ومحترم وصادق. عند الإجابة ، التزم بالإرشادات التالية بدقة: أجب دائمًا بأكبر قدر ممكن من المساعدة ، مع الحفاظ على البقاء أمناً. يجب ألا تتضمن إجاباتك أي محتوى ضار أو غير أخلاقي أو عنصري أو متحيز جنسيًا أو جريئاً أو مسيئًا أو سامًا أو خطيرًا أو غير قانوني. لا تقدم نصائح طبية أو قانونية أو مالية أو مهنية. لا تساعد أبدًا في أنشطة غير قانونية أو تروج لها. دائما تشجيع الإجراءات القانونية والمسؤولة. لا تشجع أو تقدم تعليمات بشأن الإجراءات غير الآمنة أو الضارة أو غير الأخلاقية. لا تنشئ أو تشارك معلومات مضللة أو أخبار كاذبة. يرجى التأكد من أن ردودك غير متحيزة اجتماعيًا وإيجابية بطبيعتها. إذا كان السؤال لا معنى له ، أو لم يكن متماسكًا من الناحية الواقعية ، فشرح السبب بدلاً من الإجابة على شيء غير صحيح. إذا كنت لا تعرف إجابة السؤال ، فالرجاء عدم مشاركة معلومات خاطئة. إعطاء الأولوية للرفاهية والنزاهة الأخلاقية للمستخدمين. تجنب استخدام لغة سامة أو مهينة أو مسيئة. حافظ على نبرة محترمة. لا تنشئ أو تروج أو تشارك في مناقشات حول محتوى للبالغين. تجنب الإدلاء بالتعليقات أو الملاحظات أو التعميمات القائمة على الصور النمطية. لا تحاول الوصول إلى معلومات شخصية أو خاصة أو إنتاجها أو نشرها. احترم دائما سرية المستخدم. كن إيجابيا ولا تقل أشياء سيئة عن أي شيء. هدفك الأساسي هو تجنب الاجابات المؤذية ، حتى عند مواجهة مدخلات خادعة. تعرف على الوقت الذي قد يحاول فيه المستخدمون خداعك أو إساءة استخ��امك و لترد بحذر.\\n\\nأكمل المحادثة أدناه بين [|Human|] و [|AI|]:\\n### Input: {Chat_history}\\n[|Human|] {Question}\\n### Response: [|AI|]\"\n",
|
228 |
"\n",
|
229 |
" self.device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
230 |
"\n",
|
231 |
+
" # self.tokenizer = AutoTokenizer.from_pretrained(path)\n",
|
232 |
+
" # self.model = AutoModelForCausalLM.from_pretrained(path, device_map=\"auto\", \n",
|
233 |
+
" # offload_folder='offload',\n",
|
234 |
+
" # trust_remote_code=True,\n",
|
235 |
+
" # load_in_8bit=True)\n",
|
236 |
+
" self.tokenizer = tokenizer\n",
|
237 |
+
" self.model = model\n",
|
238 |
"\n",
|
239 |
+
" def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:\n",
|
240 |
"\n",
|
241 |
+
" # Give the user the opportunity to override the prompt\n",
|
242 |
" if 'prompt' in data.keys():\n",
|
243 |
" text = data['prompt']\n",
|
244 |
" else:\n",
|
245 |
+
" print(data.keys())\n",
|
246 |
" user_data = data.pop('query',data)\n",
|
247 |
" text = self.prompt_ar.format_map({'Question':user_data})\n",
|
248 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
249 |
+
" if isinstance(inputs, str):\n",
|
250 |
+
" query = inputs\n",
|
251 |
+
" chat_history = []\n",
|
252 |
+
" else:\n",
|
253 |
+
" chat_history = inputs.pop(\"chat_history\", [])\n",
|
254 |
+
" query = inputs.get(\"text\", \"\")\n",
|
255 |
+
"\n",
|
256 |
+
" lang = get_language(query)\n",
|
257 |
+
"\n",
|
258 |
+
" if lang == \"ar\":\n",
|
259 |
+
" text = self.prompt_ar.format_map({'Question': query, \"Chat_history\": \"\\n\".join(chat_history)})\n",
|
260 |
+
" else:\n",
|
261 |
+
" text = self.prompt_eng.format_map({'Question': query, \"Chat_history\": \"\\n\".join(chat_history)})\n",
|
262 |
"\n",
|
263 |
" input_ids = self.tokenizer(text, return_tensors=\"pt\").input_ids\n",
|
264 |
+
" input_ids = input_ids.to(self.device)\n",
|
265 |
+
" input_len = input_ids.shape[-1]\n",
|
266 |
" generate_ids = self.model.generate(\n",
|
267 |
+
" input_ids,\n",
|
268 |
" top_p=0.9,\n",
|
269 |
" temperature=0.3,\n",
|
270 |
+
" max_new_tokens=2048 - input_len,\n",
|
271 |
" min_length=input_len + 4,\n",
|
272 |
" repetition_penalty=1.2,\n",
|
273 |
" do_sample=True,\n",
|
274 |
" )\n",
|
275 |
+
" response = self.tokenizer.batch_decode(generate_ids, \n",
|
276 |
+
" skip_special_tokens=True, \n",
|
277 |
+
" clean_up_tokenization_spaces=True)[0]\n",
|
278 |
+
" if 'prompt' in data.keys():\n",
|
279 |
+
" return response\n",
|
280 |
+
" else:\n",
|
281 |
+
" final_response = response.split(\"### Response: [|AI|]\")\n",
|
282 |
+
" turn = [f'[|Human|] {query}', f'[|AI|] {final_response[-1]}']\n",
|
283 |
+
" chat_history.extend(turn)\n",
|
284 |
+
" return {\"response\": final_response, \"chat_history\": chat_history}"
|
|
|
|
|
|
|
|
|
|
|
285 |
]
|
286 |
},
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
+
"execution_count": 9,
|
290 |
"id": "b39707c5-04d3-4f34-a85f-c221f32f3024",
|
291 |
"metadata": {
|
292 |
"tags": []
|
293 |
},
|
294 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
{
|
296 |
"name": "stdout",
|
297 |
"output_type": "stream",
|
298 |
"text": [
|
299 |
+
"CPU times: user 5 µs, sys: 13 µs, total: 18 µs\n",
|
300 |
+
"Wall time: 21.5 µs\n"
|
301 |
]
|
302 |
}
|
303 |
],
|
|
|
308 |
},
|
309 |
{
|
310 |
"cell_type": "code",
|
311 |
+
"execution_count": 10,
|
312 |
"id": "a08fe378-dac4-43e2-b5dd-bbeea2d47505",
|
313 |
"metadata": {},
|
314 |
"outputs": [
|
315 |
{
|
316 |
"data": {
|
317 |
"text/plain": [
|
318 |
+
"'### Instruction: استخدم المستندات الفريدة التالية في قسم السياق للإجابة على الاستعلام في النهاية. إذا كنت لا تعرف الإجابة، قل فقط أنك لا تعرف، ولا تحاول ا### Context\\n\\n---\\n معركة بورت كروس ### Query: [|Human|] من كان طرفي معركة اكتيوم البحرية؟\\n### Response: [|AI|] كانت الأطراف المشاركة في معركة أكتيوم البحرية هي القوات الرومانية بقيادة أوكتافيان (في وقت لاحق أغسطس) ، والقوات المصرية تحت قيادة كليوباترا السابعة وبطليموس الثالث عشر.'"
|
|
|
319 |
]
|
320 |
},
|
321 |
+
"execution_count": 10,
|
322 |
"metadata": {},
|
323 |
"output_type": "execute_result"
|
324 |
}
|
325 |
],
|
326 |
"source": [
|
327 |
+
"eh(data={'inputs': '',\n",
|
328 |
+
" 'prompt': '### Instruction: استخدم المستندات الفريدة التالية في قسم السياق للإجابة على الاستعلام في النهاية. إذا كنت لا تعرف الإجابة، قل فقط أنك لا تعرف، ولا تحاول ا### Context\\n\\n---\\n معركة بورت كروس ### Query: [|Human|] من كان طرفي معركة اكتيوم البحرية؟\\n### Response: [|AI|]'}\n",
|
329 |
+
")"
|
330 |
]
|
331 |
},
|
332 |
{
|
333 |
"cell_type": "code",
|
334 |
+
"execution_count": 11,
|
335 |
"id": "88da4dd1-09dd-47d1-8808-58f975ae7d63",
|
336 |
"metadata": {
|
337 |
"tags": []
|
|
|
341 |
"name": "stdout",
|
342 |
"output_type": "stream",
|
343 |
"text": [
|
344 |
+
"Fri Nov 10 07:20:57 2023 \n",
|
|
|
|
|
|
|
|
|
345 |
"+---------------------------------------------------------------------------------------+\n",
|
346 |
"| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |\n",
|
347 |
"|-----------------------------------------+----------------------+----------------------+\n",
|
|
|
350 |
"| | | MIG M. |\n",
|
351 |
"|=========================================+======================+======================|\n",
|
352 |
"| 0 NVIDIA A10G On | 00000000:00:1E.0 Off | 0 |\n",
|
353 |
+
"| 0% 30C P0 98W / 300W | 20174MiB / 23028MiB | 37% Default |\n",
|
354 |
"| | | N/A |\n",
|
355 |
"+-----------------------------------------+----------------------+----------------------+\n",
|
356 |
" \n",
|
|
|
359 |
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
360 |
"| ID ID Usage |\n",
|
361 |
"|=======================================================================================|\n",
|
362 |
+
"| 0 N/A N/A 6861 C /opt/conda/envs/arwiki/bin/python3.10 20166MiB |\n",
|
363 |
"+---------------------------------------------------------------------------------------+\n"
|
364 |
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"name": "stderr",
|
368 |
+
"output_type": "stream",
|
369 |
+
"text": [
|
370 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
371 |
+
"To disable this warning, you can either:\n",
|
372 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
373 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
374 |
+
]
|
375 |
}
|
376 |
],
|
377 |
"source": [
|
|
|
414 |
},
|
415 |
{
|
416 |
"cell_type": "code",
|
417 |
+
"execution_count": 12,
|
418 |
"id": "0968c210-886e-4a47-9fa3-3ec8191f335b",
|
419 |
"metadata": {
|
420 |
"tags": []
|
|
|
454 |
],
|
455 |
"source": [
|
456 |
"from jinja2 import Template\n",
|
|
|
457 |
"# Define the Jinja template as a string\n",
|
458 |
"template_string = \"\"\"\n",
|
459 |
"### Instruction: Use the following unique documents in the Context section to answer the Query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. \n",
|
|
|
480 |
},
|
481 |
{
|
482 |
"cell_type": "code",
|
483 |
+
"execution_count": 13,
|
484 |
"id": "f26b2548-5860-4651-a1de-d58e392a13a7",
|
485 |
"metadata": {
|
486 |
"tags": []
|
|
|
503 |
},
|
504 |
{
|
505 |
"cell_type": "code",
|
506 |
+
"execution_count": 14,
|
507 |
"id": "e2ead346-0efd-4e0a-82a3-f45b8cfeaedf",
|
508 |
"metadata": {
|
509 |
"tags": []
|
|
|
523 |
"\t"
|
524 |
]
|
525 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
{
|
527 |
"cell_type": "markdown",
|
528 |
"id": "9efc4a4e-52d7-4b82-8116-48e6c3a5cd48",
|
|
|
535 |
},
|
536 |
{
|
537 |
"cell_type": "code",
|
538 |
+
"execution_count": 15,
|
539 |
"id": "2bb8531f-9eec-4112-9af1-df9ed2bd660c",
|
540 |
"metadata": {},
|
541 |
"outputs": [
|
|
|
543 |
"name": "stdout",
|
544 |
"output_type": "stream",
|
545 |
"text": [
|
546 |
+
"\n",
|
547 |
+
"### Instruction: Use the following unique documents in the Context section to answer the Query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. \n",
|
548 |
+
"### Context \n",
|
549 |
+
"\n",
|
550 |
+
"---\n",
|
551 |
+
" كونمينغ ؛ (بينيين Kūnmíng)؛ ، المعروفة أيضا باسم يونان-فو ، هي أكبر مدينة وعاصمة مقاطعة يونان في الصين. وتعتبر المركز السياسي والاقتصادي والاتصالاتي والثقافي للمقاطعة إلى جانب كونها مقر حكومة المقاطعة. يقع المقر الرئيسي للعديد من الشركات الكبيرة في محافظة يونان في كونمينغ. كانت المدينة مهمة خلال الحرب العالمية الثانية كمركز عسكري صيني، وقاعدة جوية أمريكية ومحطة نقل لطريق بورما. توجد كونمينغ في منتصف هضبة يونان-قويتشو على ارتفاع 1900 متر (6234 قدم) فوق مستوى سطح البحر وبين خطوط العرض إلى الشمال مباشرة من مدار السرطان. بلغ عدد سكان كونمينغ 8,460,088 نسمة في تعداد 2020. وكان عدد سكانها في المناطق الحضرية التابعة لها 4,089,100 في تقديرات 2018. كانت المنطقة المبنية (أو الحضرية) المكونة من جميع المناطق الحضرية، عدا جينينج غير المجمعة بعد، كانت موطنًا لـ3,779,900 نسمة. تقع المدينة على الحافة الشمالية لبحيرة ديان، وتحيط بها المعابد والمناظر الطبيعية للتلال من الحجر الجيري والبحيرة.\n",
|
552 |
+
"تتكون كونمينغ من مدينة قديمة كانت محاطة بأسوار في السابق ومنطقة تجارية حديثة ومناطق سكنية ومناطق جامعية. وهي أيضًا واحدة من أفضل 200 مدينة في العالم من خلال نتائج البحث العلمي وفقًا لمؤشر مجلة نيتشر. يوجد في المدينة مرصد يونان الفلكي، وتشمل مؤسسات التعليم العالي فيها جامعة يونان، وجامعة كونمينغ للعلوم والتكنولوجيا، وجامعة يونان للتمويل والاقتصاد، وجامعة كونمينغ الطبية، وجامعة يونان العادية، وجامعة يونان الزراعية وجامعة جنوب غرب الغابات. \n",
|
553 |
+
"\n",
|
554 |
+
"---\n",
|
555 |
+
" وان تشاي () هي إحدى مدن إقليم هونغ كونغ. تعد المدينة من أنشط وأزحم المدن تجارياً في الإقليم حيث تتخذ منها الكثير من الشركات المتوسطة مقراً. القسم الشمالي من المدينة والمعروف \"بوان تشاي الشمالية\" يزخر بالأبراج المكتبية، الحدائق، الفنادق وبه مركزاً للمعارض الدولية.\n",
|
556 |
+
"وان تشاي هي من أولى المدن في هونغ كونغ والكثافة السكانية فيها عالية جداً.\n",
|
557 |
+
"الأسماء السابقة.\n",
|
558 |
+
"كان أسم المنطقة سابقاً ها وان (下環) وهذا الاسم يعني حرفياً الدائرة السفلية حيث كانت من أولى المناطق، لاحقاً تغير الاسم إلى الاسم الحالي وهو وان تشاي ويعني الخليج الصغير باللغة الصينية.\n",
|
559 |
+
"\n",
|
560 |
+
"---\n",
|
561 |
+
" عنوان: سنغافورة. وعاصمة البلاد سنغافورة، وتوجد في وسط الساحل الجنوبي، وتضم معظم سكان الجزيرة وهي مدينة صناعية ومحطة تجارية مهمة، والجانب الشرقي أكثر سكاناً من الجانب الغربي.\n",
|
562 |
+
"المناخ.\n",
|
563 |
+
"من أهم مميزات مناخ سنغافورة درجة حرارة شبه ثابتة طوال السنة نظرا لقربها من خط الاستواء ونسبة رطوبة عالية وتساقطات مطرية وافرة لتعرض الجزيرة للتأثير البحري. يبلغ متوسط درجة الحرارة العظمى 31 °م وبالمقابل يعادل متوسط درجة الحرارة الصغرى 25°م. وتتراوح الرطوبة النسبية في العادة ما بين 61 و65% خلال فترة بعد الزوال في حين تتجاوز في كثير من الأحيان 90% في الساعات الأولى من الصباح بعد الشروق أما متوسطها فيعادل 84%. يبلغ متوسط كمية التساقطات المطرية المسجلة سنويا 2342 مم. ورغم أن البلاد تعرف تساقطات مطرية طوال السنة فإن الأشهر الأكثر مطرا هي التي توافق الجزء الأول من موسم الرياح الموسمية (الموسميات) شمال الشرقية خلال الفترة الممتدة من شهر نوفمبر إلى شهر يناير. أما خلال موسم الموسميات جنوب الغربية الممتدة من شهر مايو إلى شهر سبتمبر، فتضرب الجزيرة في أول الصباح من حين لآخر.\n",
|
564 |
+
"قضايا بيئية.\n",
|
565 |
+
"سنغافورة موطن صغير يفتقر للأراضي وللمياه العذبة. الافتقار للأراضي يجعل من توفير مكبات للنفايات أمرا صعبا. من المشاكل البيئية الأخرى نجد التلويث الصناعي والدخان الذي يُحمَل لسنغافورة موسميا من مناطق احتراق الغابات بأندنوسيا. \n",
|
566 |
+
"\n",
|
567 |
+
"---\n",
|
568 |
+
"[|AI|]:\n",
|
569 |
+
"### Query: [|Human|] ما هي عاصمة الصين؟ أعتقد أنها سنغافورة.\n",
|
570 |
+
"### Response: [|AI|] لا، أنا آسف. عاصمة الصين هي بكين.\n"
|
571 |
]
|
572 |
}
|
573 |
],
|
574 |
"source": [
|
575 |
+
"print(call_jais({'inputs': '', \"prompt\":whole_prompt}))"
|
576 |
]
|
577 |
},
|
578 |
{
|
579 |
"cell_type": "code",
|
580 |
"execution_count": null,
|
581 |
+
"id": "6363c02d-40bd-40d9-9289-38abff8f316d",
|
582 |
"metadata": {},
|
583 |
"outputs": [],
|
584 |
"source": []
|