|
import streamlit as st |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.nn.functional import softmax |
|
from transformers import XLMRobertaTokenizerFast, AutoModelForTokenClassification |
|
import pandas as pd |
|
import trafilatura |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
tokenizer = XLMRobertaTokenizerFast.from_pretrained("xlm-roberta-large") |
|
model = AutoModelForTokenClassification.from_pretrained("dejanseo/LinkBERT-XL").to(device) |
|
model.eval() |
|
|
|
|
|
|
|
def tokenize_with_indices(text: str): |
|
encoded = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True) |
|
return encoded['input_ids'], encoded['offset_mapping'] |
|
|
|
def fetch_and_extract_content(url: str): |
|
downloaded = trafilatura.fetch_url(url) |
|
if downloaded: |
|
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False) |
|
return content |
|
return None |
|
|
|
def process_text(inputs: str, confidence_threshold: float): |
|
max_chunk_length = 512 - 2 |
|
words = inputs.split() |
|
chunk_texts = [] |
|
current_chunk = [] |
|
current_length = 0 |
|
for word in words: |
|
if len(tokenizer.tokenize(word)) + current_length > max_chunk_length: |
|
chunk_texts.append(" ".join(current_chunk)) |
|
current_chunk = [word] |
|
current_length = len(tokenizer.tokenize(word)) |
|
else: |
|
current_chunk.append(word) |
|
current_length += len(tokenizer.tokenize(word)) |
|
chunk_texts.append(" ".join(current_chunk)) |
|
|
|
df_data = { |
|
'Word': [], |
|
'Prediction': [], |
|
'Confidence': [], |
|
'Start': [], |
|
'End': [] |
|
} |
|
reconstructed_text = "" |
|
original_position_offset = 0 |
|
|
|
for chunk in chunk_texts: |
|
input_ids, token_offsets = tokenize_with_indices(chunk) |
|
predictions = [] |
|
|
|
input_ids_tensor = torch.tensor(input_ids).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
outputs = model(input_ids_tensor) |
|
logits = outputs.logits |
|
predictions = torch.argmax(logits, dim=-1).squeeze().tolist() |
|
softmax_scores = F.softmax(logits, dim=-1).squeeze().tolist() |
|
|
|
word_info = {} |
|
|
|
for idx, (start, end) in enumerate(token_offsets): |
|
if idx == 0 or idx == len(token_offsets) - 1: |
|
continue |
|
|
|
word_start = start |
|
while word_start > 0 and chunk[word_start-1] != ' ': |
|
word_start -= 1 |
|
|
|
if word_start not in word_info: |
|
word_info[word_start] = {'prediction': 0, 'confidence': 0.0, 'subtokens': []} |
|
|
|
confidence_percentage = softmax_scores[idx][predictions[idx]] * 100 |
|
|
|
if predictions[idx] == 1 and confidence_percentage >= confidence_threshold: |
|
word_info[word_start]['prediction'] = 1 |
|
|
|
word_info[word_start]['confidence'] = max(word_info[word_start]['confidence'], confidence_percentage) |
|
word_info[word_start]['subtokens'].append((start, end, chunk[start:end])) |
|
|
|
last_end = 0 |
|
for word_start in sorted(word_info.keys()): |
|
word_data = word_info[word_start] |
|
for subtoken_start, subtoken_end, subtoken_text in word_data['subtokens']: |
|
escaped_subtoken_text = subtoken_text.replace('$', '\\$') |
|
if last_end < subtoken_start: |
|
reconstructed_text += chunk[last_end:subtoken_start] |
|
if word_data['prediction'] == 1: |
|
reconstructed_text += f"<span style='background-color: rgba(0, 255, 0); display: inline;'>{escaped_subtoken_text}</span>" |
|
else: |
|
reconstructed_text += escaped_subtoken_text |
|
last_end = subtoken_end |
|
|
|
df_data['Word'].append(escaped_subtoken_text) |
|
df_data['Prediction'].append(word_data['prediction']) |
|
df_data['Confidence'].append(word_info[word_start]['confidence']) |
|
df_data['Start'].append(subtoken_start + original_position_offset) |
|
df_data['End'].append(subtoken_end + original_position_offset) |
|
|
|
|
|
original_position_offset += len(chunk) + 1 |
|
|
|
reconstructed_text += chunk[last_end:].replace('$', '\\$') |
|
|
|
df_tokens = pd.DataFrame(df_data) |
|
return reconstructed_text, df_tokens |
|
|
|
|
|
|
|
st.set_page_config(layout="wide") |
|
st.title('SEO by DEJAN: LinkBERT') |
|
|
|
confidence_threshold = st.slider('Confidence Threshold', 50, 100, 50) |
|
|
|
tab1, tab2 = st.tabs(["Text Input", "URL Input"]) |
|
|
|
with tab1: |
|
user_input = st.text_area("Enter text to process:") |
|
if st.button('Process Text'): |
|
highlighted_text, df_tokens = process_text(user_input, confidence_threshold) |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
st.dataframe(df_tokens) |
|
|
|
with tab2: |
|
url_input = st.text_input("Enter URL to process:") |
|
if st.button('Fetch and Process'): |
|
content = fetch_and_extract_content(url_input) |
|
if content: |
|
highlighted_text, df_tokens = process_text(content, confidence_threshold) |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
st.dataframe(df_tokens) |
|
else: |
|
st.error("Could not fetch content from the URL. Please check the URL and try again.") |
|
|