clv / app.py
deepakkaura26's picture
Update app.py
8fea24b
raw
history blame
1.07 kB
import streamlit as st
import pandas as pd
pip install openpyxl
st.title("Customer Lifetime Value App")
# Read the dataset
data = pd.read_excel('online_retail_II.xlsx')
# Get the user id
user_id = st.selectbox('Select the user id :', data.CustomerID.unique())
# Get the data for the selected user id
user_data = data[data['CustomerID'] == user_id]
# Calculate the CLV
clv = (user_data.UnitPrice * user_data.Quantity).sum()
st.write('Customer lifetime value : ', clv)
# Calculate the next purchase date
purchase_date = user_data.InvoiceDate.max()
st.write('Next purchase date : ', purchase_date)
# Get the purchase trend
user_data['InvoiceDate'] = pd.to_datetime(user_data['InvoiceDate'])
user_data['Day'] = user_data['InvoiceDate'].dt.day
user_data['Month'] = user_data['InvoiceDate'].dt.month
user_data['Week'] = user_data['InvoiceDate'].dt.week
user_data['Year'] = user_data['InvoiceDate'].dt.year
# Plot the graphs
st.subheader('Purchase Trend')
# Risk of Churn
if clv <= 0:
st.write('Risk of Churn : Yes')
else:
st.write('Risk of Churn : No')