File size: 8,748 Bytes
786cb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest

import numpy as np

from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow


if is_flax_available():
    import jax
    import jax.numpy as jnp
    from flax.jax_utils import replicate
    from flax.training.common_utils import shard
    from jax import pmap

    from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline


@require_flax
class DownloadTests(unittest.TestCase):
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            _ = FlaxDiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a PyTorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
            assert not any(f.endswith(".bin") for f in files)


@slow
@require_flax
class FlaxPipelineTests(unittest.TestCase):
    def test_dummy_all_tpus(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 4

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, num_samples)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (num_samples, 1, 64, 64, 3)
        if jax.device_count() == 8:
            assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3
            assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1

        images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))

        assert len(images_pil) == num_samples

    def test_stable_diffusion_v1_4(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, num_samples)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (num_samples, 1, 512, 512, 3)
        if jax.device_count() == 8:
            assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3
            assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1

    def test_stable_diffusion_v1_4_bfloat_16(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, num_samples)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (num_samples, 1, 512, 512, 3)
        if jax.device_count() == 8:
            assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
            assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1

    def test_stable_diffusion_v1_4_bfloat_16_with_safety(self):
        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16
        )

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, num_samples)
        prompt_ids = shard(prompt_ids)

        images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images

        assert images.shape == (num_samples, 1, 512, 512, 3)
        if jax.device_count() == 8:
            assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3
            assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1

    def test_stable_diffusion_v1_4_bfloat_16_ddim(self):
        scheduler = FlaxDDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            revision="bf16",
            dtype=jnp.bfloat16,
            scheduler=scheduler,
            safety_checker=None,
        )
        scheduler_state = scheduler.create_state()

        params["scheduler"] = scheduler_state

        prompt = (
            "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
            " field, close up, split lighting, cinematic"
        )

        prng_seed = jax.random.PRNGKey(0)
        num_inference_steps = 50

        num_samples = jax.device_count()
        prompt = num_samples * [prompt]
        prompt_ids = pipeline.prepare_inputs(prompt)

        p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,))

        # shard inputs and rng
        params = replicate(params)
        prng_seed = jax.random.split(prng_seed, num_samples)
        prompt_ids = shard(prompt_ids)

        images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images

        assert images.shape == (num_samples, 1, 512, 512, 3)
        if jax.device_count() == 8:
            assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3
            assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1