Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import multiprocessing | |
import random | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
from PIL.Image import Image, ANTIALIAS | |
import gradio as gr | |
from faiss import METRIC_INNER_PRODUCT | |
import requests | |
import pandas as pd | |
import backoff | |
from functools import lru_cache | |
cpu_count = multiprocessing.cpu_count() | |
model = SentenceTransformer("clip-ViT-B-16") | |
def resize_image(image: Image, size: int = 224) -> Image: | |
"""Resizes an image retaining the aspect ratio.""" | |
w, h = image.size | |
if w == h: | |
image = image.resize((size, size), ANTIALIAS) | |
return image | |
if w > h: | |
height_percent = size / float(h) | |
width_size = int(float(w) * float(height_percent)) | |
image = image.resize((width_size, size), ANTIALIAS) | |
return image | |
if w < h: | |
width_percent = size / float(w) | |
height_size = int(float(w) * float(width_percent)) | |
image = image.resize((size, height_size), ANTIALIAS) | |
return image | |
dataset = load_dataset("davanstrien/ia-loaded-embedded-gpu", split="train") | |
dataset = dataset.filter(lambda x: x["embedding"] is not None) | |
dataset.add_faiss_index("embedding", metric_type=METRIC_INNER_PRODUCT) | |
def get_nearest_k_examples(input, k): | |
query = model.encode(input) | |
# faiss_index = dataset.get_index("embedding").faiss_index # TODO maybe add range? | |
# threshold = 0.95 | |
# limits, distances, indices = faiss_index.range_search(x=query, thresh=threshold) | |
# images = dataset[indices] | |
_, retrieved_examples = dataset.get_nearest_examples("embedding", query=query, k=k) | |
images = retrieved_examples["image"][:k] | |
last_modified = retrieved_examples["last_modified_date"] # [:k] | |
crawl_date = retrieved_examples["crawl_date"] # [:k] | |
metadata = [ | |
f"last_modified {modified}, crawl date:{crawl}" | |
for modified, crawl in zip(last_modified, crawl_date) | |
] | |
return list(zip(images, metadata)) | |
def return_random_sample(k=27): | |
sample = random.sample(range(len(dataset)), k) | |
images = dataset[sample]["image"] | |
return [resize_image(image).convert("RGB") for image in images] | |
def predict_subset(model_id, token): | |
API_URL = f"https://api-inference.huggingface.co/models/{model_id}" | |
headers = {"Authorization": f"Bearer {token}"} | |
def _query(url): | |
r = requests.post(API_URL, headers=headers, data=url) | |
print(r) | |
return r | |
def query(url): | |
response = _query(url) | |
try: | |
data = response.json() | |
argmax = data[0] | |
return {"score": argmax["score"], "label": argmax["label"]} | |
except Exception: | |
return {"score": None, "label": None} | |
# dataset2 = copy.deepcopy(dataset) | |
# dataset2.drop_index("embedding") | |
dataset = load_dataset("davanstrien/ia-loaded-embedded-gpu", split="train") | |
sample = random.sample(range(len(dataset)), 10) | |
sample = dataset.select(sample) | |
print("predicting...") | |
predictions = [] | |
for row in sample: | |
url = row["url"] | |
predictions.append(query(url)) | |
gallery = [] | |
for url, prediction in zip(sample["url"], predictions): | |
gallery.append((url, f"{prediction['label'], prediction['score']}")) | |
# sample = sample.map(lambda x: query(x['url'])) | |
labels = [d["label"] for d in predictions] | |
from toolz import frequencies | |
df = pd.DataFrame( | |
{"labels": frequencies(labels).keys(), "freqs": frequencies(labels).values()} | |
) | |
return gallery, df | |
with gr.Blocks() as demo: | |
with gr.Tab("Random image gallery"): | |
button = gr.Button("Refresh") | |
gallery = gr.Gallery().style(grid=9, height="1400") | |
button.click(return_random_sample, [], [gallery]) | |
with gr.Tab("image search"): | |
text = gr.Textbox(label="Search for images") | |
k = gr.Slider(minimum=3, maximum=18, step=1) | |
button = gr.Button("search") | |
gallery = gr.Gallery().style(grid=3) | |
button.click(get_nearest_k_examples, [text, k], [gallery]) | |
# with gr.Tab("Export for label studio"): | |
# button = gr.Button("Export") | |
# dataset2 = copy.deepcopy(dataset) | |
# # dataset2 = dataset2.remove_columns('image') | |
# # dataset2 = dataset2.rename_column("url", "image") | |
# csv = dataset2.to_csv("label_studio.csv") | |
# csv_file = gr.File("label_studio.csv") | |
# button.click(dataset.save_to_disk, [], [csv_file]) | |
with gr.Tab("predict"): | |
token = gr.Textbox(label="token", type="password") | |
model_id = gr.Textbox(label="model_id") | |
button = gr.Button("predict") | |
plot = gr.BarPlot(x="labels", y="freqs", width=600, height=400, vertical=False) | |
gallery = gr.Gallery() | |
button.click(predict_subset, [model_id, token], [gallery, plot]) | |
demo.launch(enable_queue=True) | |