Spaces:
Running
on
T4
Running
on
T4
Remove zero GPU code temporaly
Browse files- app.py +12 -17
- requirements.txt +2 -2
app.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
import spaces
|
2 |
import requests
|
3 |
import logging
|
4 |
import duckdb
|
5 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
6 |
from bertopic import BERTopic
|
7 |
-
import pandas as pd
|
8 |
import gradio as gr
|
9 |
from bertopic.representation import (
|
10 |
KeyBERTInspired,
|
@@ -13,10 +12,9 @@ from bertopic.representation import (
|
|
13 |
)
|
14 |
from umap import UMAP
|
15 |
import numpy as np
|
16 |
-
from torch import cuda
|
17 |
-
from torch import bfloat16
|
18 |
from transformers import (
|
19 |
-
|
20 |
AutoTokenizer,
|
21 |
AutoModelForCausalLM,
|
22 |
pipeline,
|
@@ -44,12 +42,12 @@ model_id = "meta-llama/Llama-2-7b-chat-hf"
|
|
44 |
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
|
45 |
logging.info(device)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
55 |
|
@@ -57,7 +55,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
57 |
model = AutoModelForCausalLM.from_pretrained(
|
58 |
model_id,
|
59 |
trust_remote_code=True,
|
60 |
-
|
61 |
device_map="auto",
|
62 |
)
|
63 |
|
@@ -113,12 +111,12 @@ def get_docs_from_parquet(parquet_urls, column, offset, limit):
|
|
113 |
return df[column].tolist()
|
114 |
|
115 |
|
116 |
-
@spaces.GPU
|
117 |
def calculate_embeddings(docs):
|
118 |
return sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
|
119 |
|
120 |
|
121 |
-
@spaces.GPU
|
122 |
def fit_model(base_model, docs, embeddings):
|
123 |
new_model = BERTopic(
|
124 |
"english",
|
@@ -242,9 +240,6 @@ with gr.Blocks() as demo:
|
|
242 |
outputs=[topics_df, topics_plot],
|
243 |
)
|
244 |
|
245 |
-
# TODO: choose num_rows, random, or offset -> By default limit max to 1176 rows
|
246 |
-
# -> From the article, it could be in GPU 1176/sec
|
247 |
-
|
248 |
def _resolve_dataset_selection(
|
249 |
dataset: str, default_subset: str, default_split: str, text_feature
|
250 |
):
|
|
|
1 |
+
# import spaces
|
2 |
import requests
|
3 |
import logging
|
4 |
import duckdb
|
5 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
6 |
from bertopic import BERTopic
|
|
|
7 |
import gradio as gr
|
8 |
from bertopic.representation import (
|
9 |
KeyBERTInspired,
|
|
|
12 |
)
|
13 |
from umap import UMAP
|
14 |
import numpy as np
|
15 |
+
from torch import cuda, bfloat16
|
|
|
16 |
from transformers import (
|
17 |
+
BitsAndBytesConfig,
|
18 |
AutoTokenizer,
|
19 |
AutoModelForCausalLM,
|
20 |
pipeline,
|
|
|
42 |
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
|
43 |
logging.info(device)
|
44 |
|
45 |
+
bnb_config = BitsAndBytesConfig(
|
46 |
+
load_in_4bit=True, # 4-bit quantization
|
47 |
+
bnb_4bit_quant_type="nf4", # Normalized float 4
|
48 |
+
bnb_4bit_use_double_quant=True, # Second quantization after the first
|
49 |
+
bnb_4bit_compute_dtype=bfloat16, # Computation type
|
50 |
+
)
|
51 |
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
|
|
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_id,
|
57 |
trust_remote_code=True,
|
58 |
+
quantization_config=bnb_config,
|
59 |
device_map="auto",
|
60 |
)
|
61 |
|
|
|
111 |
return df[column].tolist()
|
112 |
|
113 |
|
114 |
+
# @spaces.GPU
|
115 |
def calculate_embeddings(docs):
|
116 |
return sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
|
117 |
|
118 |
|
119 |
+
# @spaces.GPU
|
120 |
def fit_model(base_model, docs, embeddings):
|
121 |
new_model = BERTopic(
|
122 |
"english",
|
|
|
240 |
outputs=[topics_df, topics_plot],
|
241 |
)
|
242 |
|
|
|
|
|
|
|
243 |
def _resolve_dataset_selection(
|
244 |
dataset: str, default_subset: str, default_split: str, text_feature
|
245 |
):
|
requirements.txt
CHANGED
@@ -4,8 +4,8 @@ gradio_huggingfacehub_search==0.0.7
|
|
4 |
duckdb
|
5 |
umap-learn
|
6 |
sentence-transformers
|
7 |
-
bitsandbytes
|
8 |
-
|
9 |
bertopic
|
10 |
pandas
|
11 |
torch
|
|
|
4 |
duckdb
|
5 |
umap-learn
|
6 |
sentence-transformers
|
7 |
+
bitsandbytes
|
8 |
+
datamapplot
|
9 |
bertopic
|
10 |
pandas
|
11 |
torch
|