asoria's picture
asoria HF staff
Adding final progress
4b40490
raw
history blame
16.2 kB
import requests
import logging
import duckdb
import numpy as np
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
from bertopic.representation import (
KeyBERTInspired,
TextGeneration,
)
from umap import UMAP
from torch import cuda, bfloat16
from transformers import (
BitsAndBytesConfig,
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
)
from prompts import REPRESENTATION_PROMPT
from hdbscan import HDBSCAN
from sklearn.feature_extraction.text import CountVectorizer
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
import os
# import spaces
import gradio as gr
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
MAX_ROWS = 1_000
CHUNK_SIZE = 300
session = requests.Session()
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
keybert = KeyBERTInspired()
vectorizer_model = CountVectorizer(stop_words="english")
model_id = "meta-llama/Llama-2-7b-chat-hf"
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
logging.info(device)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # 4-bit quantization
bnb_4bit_quant_type="nf4", # Normalized float 4
bnb_4bit_use_double_quant=True, # Second quantization after the first
bnb_4bit_compute_dtype=bfloat16, # Computation type
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto",
offload_folder="offload", # Offloading part of the model to CPU to save GPU memory
)
# Enable gradient checkpointing for memory efficiency during backprop?
model.gradient_checkpointing_enable()
generator = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
temperature=0.1,
max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption
repetition_penalty=1.1,
)
llama2 = TextGeneration(generator, prompt=REPRESENTATION_PROMPT)
representation_model = {
"KeyBERT": keybert,
"Llama2": llama2,
}
# TODO: It should be proporcional to the number of rows
# For small datasets (1-200 rows) it worked fine with 2 neighbors
N_NEIGHBORS = 15
umap_model = UMAP(
n_neighbors=N_NEIGHBORS,
n_components=5,
min_dist=0.0,
metric="cosine",
random_state=42,
)
hdbscan_model = HDBSCAN(
min_cluster_size=N_NEIGHBORS,
metric="euclidean",
cluster_selection_method="eom",
prediction_data=True,
)
reduce_umap_model = UMAP(
n_neighbors=N_NEIGHBORS,
n_components=2,
min_dist=0.0,
metric="cosine",
random_state=42,
)
global_topic_model = None
def get_split_rows(dataset, config, split):
config_size = session.get(
f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}",
timeout=20,
).json()
if "error" in config_size:
raise Exception(f"Error fetching config size: {config_size['error']}")
split_size = next(
(s for s in config_size["size"]["splits"] if s["split"] == split),
None,
)
if split_size is None:
raise Exception(f"Error fetching split{split} in config {config}")
return split_size["num_rows"]
def get_parquet_urls(dataset, config, split):
parquet_files = session.get(
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
timeout=20,
).json()
if "error" in parquet_files:
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
logging.debug(f"Parquet files: {parquet_urls}")
return ",".join(f"'{url}'" for url in parquet_urls)
def get_docs_from_parquet(parquet_urls, column, offset, limit):
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
df = duckdb.sql(SQL_QUERY).to_df()
logging.debug(f"Dataframe: {df.head(5)}")
return df[column].tolist()
# @spaces.GPU
# TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better?
def calculate_embeddings(docs):
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
# @spaces.GPU
def fit_model(docs, embeddings):
global global_topic_model
new_model = BERTopic(
"english",
# Sub-models
embedding_model=sentence_model,
umap_model=umap_model,
hdbscan_model=hdbscan_model,
representation_model=representation_model,
vectorizer_model=vectorizer_model,
# Hyperparameters
top_n_words=10,
verbose=True,
min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS?
)
logging.info("Fitting new model")
new_model.fit(docs, embeddings)
logging.info("End fitting new model")
global_topic_model = new_model
logging.info("Global model updated")
def generate_topics(dataset, config, split, column, nested_column):
logging.info(
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
)
parquet_urls = get_parquet_urls(dataset, config, split)
split_rows = get_split_rows(dataset, config, split)
logging.info(f"Split rows: {split_rows}")
limit = min(split_rows, MAX_ROWS)
offset = 0
rows_processed = 0
base_model = None
all_docs = []
reduced_embeddings_list = []
topics_info, topic_plot = None, None
yield (
gr.DataFrame(interactive=False, visible=True),
gr.Plot(visible=True),
gr.Label(
{f"⚙️ Generating topics {dataset}": rows_processed / limit}, visible=True
),
)
while offset < limit:
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
if not docs:
break
logging.info(
f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
)
embeddings = calculate_embeddings(docs)
fit_model(docs, embeddings)
if base_model is None:
base_model = global_topic_model
else:
updated_model = BERTopic.merge_models([base_model, global_topic_model])
nr_new_topics = len(set(updated_model.topics_)) - len(
set(base_model.topics_)
)
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
logging.info(f"The following topics are newly found: {new_topics}")
base_model = updated_model
repr_model_topics = {
key: label[0][0].split("\n")[0]
for key, label in base_model.get_topics(full=True)["Llama2"].items()
}
base_model.set_topic_labels(repr_model_topics)
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
reduced_embeddings_list.append(reduced_embeddings)
all_docs.extend(docs)
topics_info = base_model.get_topic_info()
topic_plot = base_model.visualize_documents(
all_docs,
reduced_embeddings=np.vstack(reduced_embeddings_list),
custom_labels=True,
)
logging.info(f"Topics: {repr_model_topics}")
rows_processed += len(docs)
progress = min(rows_processed / limit, 1.0)
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
yield (
topics_info,
topic_plot,
gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True),
)
offset += CHUNK_SIZE
logging.info("Finished processing all data")
yield (
topics_info,
topic_plot,
gr.Label({f"✅ Generating topics {dataset}": 1.0}, visible=True),
)
cuda.empty_cache()
with gr.Blocks() as demo:
gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
gr.Markdown("## Select dataset and text column")
with gr.Accordion("Data details", open=True):
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
text_column_dropdown = gr.Dropdown(label="Text column name")
nested_text_column_dropdown = gr.Dropdown(
label="Nested text column name", visible=False
)
generate_button = gr.Button("Generate Topics", variant="primary")
gr.Markdown("## Datamap")
full_topics_generation_label = gr.Label(visible=False, show_label=False)
topics_plot = gr.Plot()
with gr.Accordion("Topics Info", open=False):
topics_df = gr.DataFrame(interactive=False, visible=True)
generate_button.click(
generate_topics,
inputs=[
dataset_name,
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
outputs=[topics_df, topics_plot, full_topics_generation_label],
)
def _resolve_dataset_selection(
dataset: str, default_subset: str, default_split: str, text_feature
):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
).json()
if "error" in info_resp:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
split = default_split if default_split in splits else splits[0]
features = info_resp["dataset_info"][subset]["features"]
def _is_string_feature(feature):
return isinstance(feature, dict) and feature.get("dtype") == "string"
text_features = [
feature_name
for feature_name, feature in features.items()
if _is_string_feature(feature)
]
nested_features = [
feature_name
for feature_name, feature in features.items()
if isinstance(feature, dict)
and isinstance(next(iter(feature.values())), dict)
]
nested_text_features = [
feature_name
for feature_name in nested_features
if any(
_is_string_feature(nested_feature)
for nested_feature in features[feature_name].values()
)
]
if not text_feature:
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
if text_feature in nested_text_features:
nested_keys = [
feature_name
for feature_name, feature in features[text_feature].items()
if _is_string_feature(feature)
]
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(
value=nested_keys[0],
choices=nested_keys,
label="Nested text column name",
visible=True,
),
}
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features, label="Text column name"
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
@dataset_name.change(
inputs=[dataset_name],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset="default", default_split="train", text_feature=None
)
@subset_dropdown.change(
inputs=[dataset_name, subset_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split="train", text_feature=None
)
@split_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split=split, text_feature=None
)
@text_column_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_text_column_dropdown(
dataset: str, subset: str, split: str, text_column
) -> dict:
return _resolve_dataset_selection(
dataset,
default_subset=subset,
default_split=split,
text_feature=text_column,
)
demo.launch()