import os import tensorflow as tf import tensorflow_hub as hub # Load compressed models from tensorflow_hub os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' import matplotlib.pyplot as plt import matplotlib as mpl # For drawing onto the image. import numpy as np from tensorflow.python.ops.numpy_ops import np_config np_config.enable_numpy_behavior() from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont import time import streamlit as st # For measuring the inference time. import time class ObjectDetector: def __init__(self): # Load Tokenizer & Model # hub_location = 'cardiffnlp/twitter-roberta-base-sentiment' # self.tokenizer = AutoTokenizer.from_pretrained(hub_location) # self.model = AutoModelForSequenceClassification.from_pretrained(hub_location) # Change model labels in config # self.model.config.id2label[0] = "Negative" # self.model.config.id2label[1] = "Neutral" # self.model.config.id2label[2] = "Positive" # self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0") # self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1") # self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2") # Instantiate explainer # self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer) # module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1" module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1" self.detector = hub.load(module_handle).signatures['default'] def run_detector(self, path): img = path converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] start_time = time.time() result = self.detector(converted_img) end_time = time.time() result = {key:value.numpy() for key,value in result.items()} primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%' image_with_boxes = self.draw_boxes( img, result["detection_boxes"], result["detection_class_entities"], result["detection_scores"]) # display_image(image_with_boxes) return image_with_boxes, primer def display_image(self, image): fig = plt.figure(figsize=(20, 15)) plt.grid(False) plt.imshow(image) def draw_bounding_box_on_image(self, image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()): """Adds a bounding box to an image.""" draw = ImageDraw.Draw(image) im_width, im_height = image.size (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = top + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font) text_bottom -= text_height - 2 * margin def draw_boxes(self, image, boxes, class_names, scores, max_boxes=10, min_score=0.4): """Overlay labeled boxes on an image with formatted scores and label names.""" colors = list(ImageColor.colormap.values()) try: font = ImageFont.truetype("./Roboto-Light.ttf", 24) except IOError: print("Font not found, using default font.") font = ImageFont.load_default() for i in range(min(boxes.shape[0], max_boxes)): if scores[i] >= min_score: ymin, xmin, ymax, xmax = tuple(boxes[i]) display_str = "{}: {}%".format(class_names[i].decode("ascii"), int(100 * scores[i])) color = colors[hash(class_names[i]) % len(colors)] image_pil = Image.fromarray(np.uint8(image)).convert("RGB") self.draw_bounding_box_on_image( image_pil, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str]) np.copyto(image, np.array(image_pil)) return image