File size: 10,043 Bytes
3ec9224
5be8df6
3ec9224
5be8df6
 
 
 
 
 
 
 
 
3ec9224
5be8df6
 
 
 
 
 
 
 
 
b1ec9ac
 
 
62fa94f
 
 
 
 
b1ec9ac
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ca07f4
22e74a2
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca2785
5be8df6
 
 
eb27368
 
 
5be8df6
 
 
 
 
 
 
 
 
4f52c44
5be8df6
4f52c44
5be8df6
 
 
 
 
 
 
b1ec9ac
 
5be8df6
 
75ea3bb
5be8df6
 
 
 
 
 
 
14155e5
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323ccbe
5be8df6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import os

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate


default_persist_directory = './chroma_HF/'

llm_name1 = "mistralai/Mistral-7B-Instruct-v0.2"
llm_name2 = "mistralai/Mistral-7B-Instruct-v0.1"
llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
llm_name4 = "microsoft/phi-2"
llm_name5 = "mosaicml/mpt-7b-instruct"
llm_name6 = "tiiuae/falcon-7b-instruct"
llm_name7 = "google/flan-t5-xxl"
list_llm = [llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits):
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    # HuggingFacePipeline uses local model
    # Warning: it will download model locally...
    # tokenizer=AutoTokenizer.from_pretrained(llm_model)
    # progress(0.5, desc="Initializing HF pipeline...")
    # pipeline=transformers.pipeline(
    #     "text-generation",
    #     model=llm_model,
    #     tokenizer=tokenizer,
    #     torch_dtype=torch.bfloat16,
    #     trust_remote_code=True,
    #     device_map="auto",
    #     # max_length=1024,
    #     max_new_tokens=max_tokens,
    #     do_sample=True,
    #     top_k=top_k,
    #     num_return_sequences=1,
    #     eos_token_id=tokenizer.eos_token_id
    #     )
    # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    llm = HuggingFaceHub(
        repo_id=llm_model, 
        model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k,\
        "trust_remote_code": True, "torch_dtype": "auto"}
    )
    
    progress(0.5, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        return_messages=True
    )
    # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
    retriever=vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    global qa_chain
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        # return_source_documents=True,
        # return_generated_question=True,
        # verbose=True,
    )
    progress(0.9, desc="Done!")
    # return qa_chain


# Initialize all elements
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    # Create list of documents (when valid)
    #file_path = file_obj.name
    list_file_path = [x.name for x in list_file_obj if x is not None]
    print('list_file_path', list_file_path)
    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    # Create or load Vector database
    progress(0.5, desc="Generating vector database...")
    # global vector_db
    vector_db = create_db(doc_splits)
    progress(0.9, desc="Done!")
    return vector_db, "Complete!"
    #return qa_chain


def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name",llm_name)
    initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return "Complete!"
    #return qa_chain


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(message, history):
    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    # return response['answer']
    
    # Append user message and response to chat history
    new_history = history + [(message, response["answer"])]
    return gr.update(value=""), new_history        
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    # print(file_path)
    # initialize_database(file_path, progress)
    return list_file_path


def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        # qa_chain = gr.Variable()
        
        gr.Markdown(
        """<center><h2>Document-based chatbot with memory</center></h2>
        <h3>Ask any questions (and follow-up) about your PDF documents</h3>
        <i>Note: this chatbot leverages LangChain for retrieval-augmented generation with memory.</i>
        """)
        with gr.Tab("Step 1 - Document pre-processing"):
            with gr.Row():
                document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF Documents")
                # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database", value = "ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Advanced options - Text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=500, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Database Initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generating vector database...")
            
        with gr.Tab("Step 2 - Initializing QA chain"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, \
                    label="LLM", value = list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM", open=False):
                slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None",label="QA chain Initialization")
            with gr.Row():
                qachain_btn = gr.Button("QA chain Initialization...")

        with gr.Tab("Step 3 - Conversation"):
            chatbot = gr.Chatbot(height=300)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit")
                clear_btn = gr.ClearButton([msg, chatbot])
            
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, db_progress])
        qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[llm_progress]).then(lambda: None, None, chatbot, queue=False)

        # Chatbot events
        msg.submit(conversation, [msg, chatbot], [msg, chatbot], queue=False)
        submit_btn.click(conversation, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False)
        clear_btn.click(lambda: None, None, chatbot, queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()