Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,569 Bytes
cae9b8d 8226b60 edb8b5e 8226b60 edb8b5e 8226b60 edb8b5e 8226b60 edb8b5e 8226b60 edb8b5e 8226b60 07d0333 8226b60 07d0333 8226b60 7a30042 8226b60 d7a9923 8226b60 19de901 c995383 713ad06 c995383 19de901 713ad06 8226b60 1e15c22 72572e5 8226b60 ef753b3 ab25924 ef753b3 ab25924 ef753b3 ab25924 ef753b3 ab25924 ef753b3 ab25924 68c53ae edba0de 68c53ae c53db80 68c53ae c53db80 68c53ae c53db80 1ee93ec 2ca84f7 8226b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import spaces
import gradio as gr
from diffusers import AutoPipelineForText2Image
import numpy as np
import math
import torch
import random
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
device="cuda"
pipe_xlc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-XLC",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_xlnc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-XLNC",
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_sc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-SC",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
pipe_snc = AutoPipelineForText2Image.from_pretrained(
"temp-org-cc/CommonCanvas-SNC",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
@spaces.GPU
def run_xlc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_xlc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_xlnc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_xlnc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_sc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_sc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
@spaces.GPU
def run_snc(prompt, negative_prompt=None, guidance_scale=7.0, pag_scale=3.0, pag_layers=["mid"], randomize_seed=True, seed=42, progress=gr.Progress(track_tqdm=True)):
if(randomize_seed):
seed = random.randint(0, 9007199254740991)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe_snc(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, pag_scale=pag_scale, pag_applied_layers=pag_layers, generator=generator, num_inference_steps=25).images[0]
return image, seed
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
.tabitem{
padding: 0 !important;
border-radius: 0;
}
.gr-group {
background: transparent !important;
border: 0 !important;
}
.styler{
background: transparent !important
}
'''
with gr.Blocks(css=css, theme=theme) as demo:
gr.Markdown('''# CommonCanvas Demo
[CommonCanvas suite of models](https://huggingface.co/collections/common-canvas/commoncanvas-66226ef9688b3580a5954653) trained on [CommonCatalogue](https://huggingface.co/collections/common-canvas/commoncatalog-6530907589ffafffe87c31c5), ~70M Creative Commons images.
''')
#with gr.Group():
with gr.Tab("XL-C model"):
with gr.Row():
prompt_xlc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for XL-C")
button_xlc = gr.Button("Generate", min_width=120)
with gr.Tab("XL-NC model"):
with gr.Row():
prompt_xlnc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for XL-NC")
button_xlnc = gr.Button("Generate", min_width=120)
with gr.Tab("S-C model"):
with gr.Row():
prompt_sc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for S-C")
button_sc = gr.Button("Generate", min_width=120)
with gr.Tab("S-NC model"):
with gr.Row():
prompt_snc = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt for S-NC")
button_snc = gr.Button("Generate", min_width=120)
output = gr.Image(label="Your result", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
guidance_scale = gr.Number(label="CFG Guidance Scale", info="The guidance scale for CFG, ignored if no prompt is entered (unconditional generation)", value=7.0)
negative_prompt = gr.Textbox(label="Negative prompt", info="Is only applied for the CFG part, leave blank for unconditional generation")
pag_scale = gr.Number(label="Pag Scale", value=3.0)
pag_layers = gr.Dropdown(label="Model layers to apply Pag to", info="mid is the one used on the paper, up and down blocks seem unstable", choices=["up", "mid", "down"], multiselect=True, value="mid")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed = gr.Slider(minimum=1, maximum=9007199254740991, step=1, randomize=True)
with gr.Accordion("Use it with 🧨 diffusers, ComfyUI, AUTOMATIC111, Forge, SD.Next, Invoke, etc.", open=False):
gr.Markdown('''The CommonCanvas S and CommonCanvas XL collections are drop-in replacements of Stable Diffusion 2 and Stable Diffusion XL respectively and can be used as such with `diffusers` or in UIs such as ComfyUI, AUTOMATIC1111, SDNext, InvokeAI, etc.
## Using it with diffusers
```py
from diffusers import AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
"common-canvas/CommonCanvasXL-C", #here you can pick between all models
custom_pipeline="multimodalart/sdxl_perturbed_attention_guidance",
torch_dtype=torch.float16
).to(device)
prompt = "a cat"
image = pipe(prompt, num_inference_steps=25).images[0]
```
## Using it ComfyUI/Automatic1111
- [CommonCanvasS-C.safetensors](https://huggingface.co/common-canvas/CommonCanvas-S-C/resolve/main/commoncanvas_s_c.safetensors?download=true) (SD2 drop-in, commercial)
- [CommonCanvasS-NC.safetensors](https://huggingface.co/common-canvas/CommonCanvas-S-NC/resolve/main/commoncanvas_s_nc.safetensors?download=true) (SD2 drop-in, non-commercial - trained on more data)
- [CommonCanvasXL-C.safetensors](https://huggingface.co/common-canvas/CommonCanvas-XL-NC/blob/main/commoncanvas_xl_nc.safetensors) (SDXL drop-in, commercial)
- [CommonCanvasXL-NC.safetensors](https://huggingface.co/common-canvas/CommonCanvas-XL-NC/resolve/main/commoncanvas_xl_nc.safetensors?download=true) (SDXL drop-in, non-commercial - trained on more data)
''')
#gr.Examples(fn=run, examples=[" ", "an insect robot preparing a delicious meal, anime style", "a photo of a group of friends at an amusement park"], inputs=prompt, outputs=[output, seed], cache_examples=True)
gr.on(
triggers=[
button_xlc.click,
prompt_xlc.submit
],
fn=run_xlc,
inputs=[prompt_xlc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_xlnc.click,
prompt_xlnc.submit
],
fn=run_xlnc,
inputs=[prompt_xlnc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_sc.click,
prompt_sc.submit
],
fn=run_sc,
inputs=[prompt_sc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
gr.on(
triggers=[
button_snc.click,
prompt_snc.submit
],
fn=run_sc,
inputs=[prompt_snc, negative_prompt, guidance_scale, pag_scale, pag_layers, randomize_seed, seed],
outputs=[output, seed],
)
if __name__ == "__main__":
demo.launch(share=True) |