Spaces:
Runtime error
Runtime error
import pandas as pd | |
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
model_checkpoint = 'cointegrated/rubert-tiny-toxicity' | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) | |
if torch.cuda.is_available(): | |
model.cuda() | |
def text2toxicity(text, aggregate=True): | |
""" Calculate toxicity of a text (if aggregate=True) or a vector of toxicity aspects (if aggregate=False)""" | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) | |
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy() | |
if isinstance(text, str): | |
proba = proba[0] | |
if aggregate: | |
return 1 - proba.T[0] * (1 - proba.T[-1]) | |
return proba | |
text = st.text_area('Введите текст', value='Пороть надо таких придурков!') | |
proba = text2toxicity(text, aggregate=False) | |
s = pd.Series( | |
proba.tolist() + [proba[0] * (1 - proba[-1])], | |
index=[ | |
'Стиль НЕтоксичный', | |
'Есть оскорбление', | |
'Есть непотребство', | |
'Есть угроза', | |
'Смысл текста неприемлемый', | |
'Текст - ОК' | |
], | |
name='Оценка вероятности' | |
) | |
s | |