ccm commited on
Commit
ca1362c
1 Parent(s): 025f222

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -9
app.py CHANGED
@@ -18,9 +18,6 @@ sess = tf.compat.v1.Session()
18
  from keras import backend as K
19
  K.set_session(sess)
20
 
21
- global graph
22
- graph = tf.compat.v1.get_default_graph()
23
-
24
  # Do you want it loud?
25
  VERBOSE = 1
26
 
@@ -89,8 +86,7 @@ class Network(object):
89
  other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
90
 
91
  # Get the outputs
92
- with graph.as_default():
93
- predicted_output = self.network.predict(data_input)
94
  true_output = self.new_curves[idx].reshape((3, self.F))
95
  predicted_output = predicted_output.reshape((3, self.F))
96
 
@@ -115,8 +111,7 @@ class Network(object):
115
  other_data_input = data_input.reshape((3, self.F))
116
 
117
  # Get the outputs
118
- with graph.as_default():
119
- predicted_output = self.network.predict(data_input)
120
  true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
121
  predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
122
 
@@ -129,8 +124,7 @@ class Network(object):
129
  data_input = other_data_input.reshape((1, 3*self.F))
130
 
131
  # Get the outputs
132
- with graph.as_default():
133
- predicted_output = self.network.predict(data_input)
134
  predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
135
 
136
  # return idx, other_data_input, true_output, predicted_output
 
18
  from keras import backend as K
19
  K.set_session(sess)
20
 
 
 
 
21
  # Do you want it loud?
22
  VERBOSE = 1
23
 
 
86
  other_data_input = data_input.reshape((self.G, self.G, self.G), order='F')
87
 
88
  # Get the outputs
89
+ predicted_output = self.network.predict(data_input)
 
90
  true_output = self.new_curves[idx].reshape((3, self.F))
91
  predicted_output = predicted_output.reshape((3, self.F))
92
 
 
111
  other_data_input = data_input.reshape((3, self.F))
112
 
113
  # Get the outputs
114
+ predicted_output = self.network.predict(data_input)
 
115
  true_output = self.new_geometry[idx].reshape((self.G, self.G, self.G), order='F')
116
  predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
117
 
 
124
  data_input = other_data_input.reshape((1, 3*self.F))
125
 
126
  # Get the outputs
127
+ predicted_output = self.network.predict(data_input)
 
128
  predicted_output = predicted_output.reshape((self.G, self.G, self.G), order='F')
129
 
130
  # return idx, other_data_input, true_output, predicted_output