Spaces:
Runtime error
Runtime error
File size: 11,789 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import logging
import math
from collections import defaultdict
from typing import Optional
import torch
from torch.utils.data.sampler import Sampler
from detectron2.utils import comm
logger = logging.getLogger(__name__)
class TrainingSampler(Sampler):
"""
In training, we only care about the "infinite stream" of training data.
So this sampler produces an infinite stream of indices and
all workers cooperate to correctly shuffle the indices and sample different indices.
The samplers in each worker effectively produces `indices[worker_id::num_workers]`
where `indices` is an infinite stream of indices consisting of
`shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True)
or `range(size) + range(size) + ...` (if shuffle is False)
Note that this sampler does not shard based on pytorch DataLoader worker id.
A sampler passed to pytorch DataLoader is used only with map-style dataset
and will not be executed inside workers.
But if this sampler is used in a way that it gets execute inside a dataloader
worker, then extra work needs to be done to shard its outputs based on worker id.
This is required so that workers don't produce identical data.
:class:`ToIterableDataset` implements this logic.
This note is true for all samplers in detectron2.
"""
def __init__(self, size: int, shuffle: bool = True, seed: Optional[int] = None):
"""
Args:
size (int): the total number of data of the underlying dataset to sample from
shuffle (bool): whether to shuffle the indices or not
seed (int): the initial seed of the shuffle. Must be the same
across all workers. If None, will use a random seed shared
among workers (require synchronization among all workers).
"""
if not isinstance(size, int):
raise TypeError(f"TrainingSampler(size=) expects an int. Got type {type(size)}.")
if size <= 0:
raise ValueError(f"TrainingSampler(size=) expects a positive int. Got {size}.")
self._size = size
self._shuffle = shuffle
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed)
while True:
if self._shuffle:
yield from torch.randperm(self._size, generator=g).tolist()
else:
yield from torch.arange(self._size).tolist()
class RandomSubsetTrainingSampler(TrainingSampler):
"""
Similar to TrainingSampler, but only sample a random subset of indices.
This is useful when you want to estimate the accuracy vs data-number curves by
training the model with different subset_ratio.
"""
def __init__(
self,
size: int,
subset_ratio: float,
shuffle: bool = True,
seed_shuffle: Optional[int] = None,
seed_subset: Optional[int] = None,
):
"""
Args:
size (int): the total number of data of the underlying dataset to sample from
subset_ratio (float): the ratio of subset data to sample from the underlying dataset
shuffle (bool): whether to shuffle the indices or not
seed_shuffle (int): the initial seed of the shuffle. Must be the same
across all workers. If None, will use a random seed shared
among workers (require synchronization among all workers).
seed_subset (int): the seed to randomize the subset to be sampled.
Must be the same across all workers. If None, will use a random seed shared
among workers (require synchronization among all workers).
"""
super().__init__(size=size, shuffle=shuffle, seed=seed_shuffle)
assert 0.0 < subset_ratio <= 1.0
self._size_subset = int(size * subset_ratio)
assert self._size_subset > 0
if seed_subset is None:
seed_subset = comm.shared_random_seed()
self._seed_subset = int(seed_subset)
# randomly generate the subset indexes to be sampled from
g = torch.Generator()
g.manual_seed(self._seed_subset)
indexes_randperm = torch.randperm(self._size, generator=g)
self._indexes_subset = indexes_randperm[: self._size_subset]
logger.info("Using RandomSubsetTrainingSampler......")
logger.info(f"Randomly sample {self._size_subset} data from the original {self._size} data")
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed) # self._seed equals seed_shuffle from __init__()
while True:
if self._shuffle:
# generate a random permutation to shuffle self._indexes_subset
randperm = torch.randperm(self._size_subset, generator=g)
yield from self._indexes_subset[randperm].tolist()
else:
yield from self._indexes_subset.tolist()
class RepeatFactorTrainingSampler(Sampler):
"""
Similar to TrainingSampler, but a sample may appear more times than others based
on its "repeat factor". This is suitable for training on class imbalanced datasets like LVIS.
"""
def __init__(self, repeat_factors, *, shuffle=True, seed=None):
"""
Args:
repeat_factors (Tensor): a float vector, the repeat factor for each indice. When it's
full of ones, it is equivalent to ``TrainingSampler(len(repeat_factors), ...)``.
shuffle (bool): whether to shuffle the indices or not
seed (int): the initial seed of the shuffle. Must be the same
across all workers. If None, will use a random seed shared
among workers (require synchronization among all workers).
"""
self._shuffle = shuffle
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
# Split into whole number (_int_part) and fractional (_frac_part) parts.
self._int_part = torch.trunc(repeat_factors)
self._frac_part = repeat_factors - self._int_part
@staticmethod
def repeat_factors_from_category_frequency(dataset_dicts, repeat_thresh):
"""
Compute (fractional) per-image repeat factors based on category frequency.
The repeat factor for an image is a function of the frequency of the rarest
category labeled in that image. The "frequency of category c" in [0, 1] is defined
as the fraction of images in the training set (without repeats) in which category c
appears.
See :paper:`lvis` (>= v2) Appendix B.2.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
repeat_thresh (float): frequency threshold below which data is repeated.
If the frequency is half of `repeat_thresh`, the image will be
repeated twice.
Returns:
torch.Tensor:
the i-th element is the repeat factor for the dataset image at index i.
"""
# 1. For each category c, compute the fraction of images that contain it: f(c)
category_freq = defaultdict(int)
for dataset_dict in dataset_dicts: # For each image (without repeats)
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
for cat_id in cat_ids:
category_freq[cat_id] += 1
num_images = len(dataset_dicts)
for k, v in category_freq.items():
category_freq[k] = v / num_images
# 2. For each category c, compute the category-level repeat factor:
# r(c) = max(1, sqrt(t / f(c)))
category_rep = {
cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
for cat_id, cat_freq in category_freq.items()
}
# 3. For each image I, compute the image-level repeat factor:
# r(I) = max_{c in I} r(c)
rep_factors = []
for dataset_dict in dataset_dicts:
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
rep_factors.append(rep_factor)
return torch.tensor(rep_factors, dtype=torch.float32)
def _get_epoch_indices(self, generator):
"""
Create a list of dataset indices (with repeats) to use for one epoch.
Args:
generator (torch.Generator): pseudo random number generator used for
stochastic rounding.
Returns:
torch.Tensor: list of dataset indices to use in one epoch. Each index
is repeated based on its calculated repeat factor.
"""
# Since repeat factors are fractional, we use stochastic rounding so
# that the target repeat factor is achieved in expectation over the
# course of training
rands = torch.rand(len(self._frac_part), generator=generator)
rep_factors = self._int_part + (rands < self._frac_part).float()
# Construct a list of indices in which we repeat images as specified
indices = []
for dataset_index, rep_factor in enumerate(rep_factors):
indices.extend([dataset_index] * int(rep_factor.item()))
return torch.tensor(indices, dtype=torch.int64)
def __iter__(self):
start = self._rank
yield from itertools.islice(self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed)
while True:
# Sample indices with repeats determined by stochastic rounding; each
# "epoch" may have a slightly different size due to the rounding.
indices = self._get_epoch_indices(g)
if self._shuffle:
randperm = torch.randperm(len(indices), generator=g)
yield from indices[randperm].tolist()
else:
yield from indices.tolist()
class InferenceSampler(Sampler):
"""
Produce indices for inference across all workers.
Inference needs to run on the __exact__ set of samples,
therefore when the total number of samples is not divisible by the number of workers,
this sampler produces different number of samples on different workers.
"""
def __init__(self, size: int):
"""
Args:
size (int): the total number of data of the underlying dataset to sample from
"""
self._size = size
assert size > 0
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size, self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[: rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
|