Spaces:
Runtime error
Runtime error
File size: 20,746 Bytes
689a1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
// Copyright (c) Facebook, Inc. and its affiliates.
#include "cocoeval.h"
#include <time.h>
#include <algorithm>
#include <cstdint>
#include <numeric>
using namespace pybind11::literals;
namespace detectron2 {
namespace COCOeval {
// Sort detections from highest score to lowest, such that
// detection_instances[detection_sorted_indices[t]] >=
// detection_instances[detection_sorted_indices[t+1]]. Use stable_sort to match
// original COCO API
void SortInstancesByDetectionScore(
const std::vector<InstanceAnnotation>& detection_instances,
std::vector<uint64_t>* detection_sorted_indices) {
detection_sorted_indices->resize(detection_instances.size());
std::iota(
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
std::stable_sort(
detection_sorted_indices->begin(),
detection_sorted_indices->end(),
[&detection_instances](size_t j1, size_t j2) {
return detection_instances[j1].score > detection_instances[j2].score;
});
}
// Partition the ground truth objects based on whether or not to ignore them
// based on area
void SortInstancesByIgnore(
const std::array<double, 2>& area_range,
const std::vector<InstanceAnnotation>& ground_truth_instances,
std::vector<uint64_t>* ground_truth_sorted_indices,
std::vector<bool>* ignores) {
ignores->clear();
ignores->reserve(ground_truth_instances.size());
for (auto o : ground_truth_instances) {
ignores->push_back(
o.ignore || o.area < area_range[0] || o.area > area_range[1]);
}
ground_truth_sorted_indices->resize(ground_truth_instances.size());
std::iota(
ground_truth_sorted_indices->begin(),
ground_truth_sorted_indices->end(),
0);
std::stable_sort(
ground_truth_sorted_indices->begin(),
ground_truth_sorted_indices->end(),
[&ignores](size_t j1, size_t j2) {
return (int)(*ignores)[j1] < (int)(*ignores)[j2];
});
}
// For each IOU threshold, greedily match each detected instance to a ground
// truth instance (if possible) and store the results
void MatchDetectionsToGroundTruth(
const std::vector<InstanceAnnotation>& detection_instances,
const std::vector<uint64_t>& detection_sorted_indices,
const std::vector<InstanceAnnotation>& ground_truth_instances,
const std::vector<uint64_t>& ground_truth_sorted_indices,
const std::vector<bool>& ignores,
const std::vector<std::vector<double>>& ious,
const std::vector<double>& iou_thresholds,
const std::array<double, 2>& area_range,
ImageEvaluation* results) {
// Initialize memory to store return data matches and ignore
const int num_iou_thresholds = iou_thresholds.size();
const int num_ground_truth = ground_truth_sorted_indices.size();
const int num_detections = detection_sorted_indices.size();
std::vector<uint64_t> ground_truth_matches(
num_iou_thresholds * num_ground_truth, 0);
std::vector<uint64_t>& detection_matches = results->detection_matches;
std::vector<bool>& detection_ignores = results->detection_ignores;
std::vector<bool>& ground_truth_ignores = results->ground_truth_ignores;
detection_matches.resize(num_iou_thresholds * num_detections, 0);
detection_ignores.resize(num_iou_thresholds * num_detections, false);
ground_truth_ignores.resize(num_ground_truth);
for (auto g = 0; g < num_ground_truth; ++g) {
ground_truth_ignores[g] = ignores[ground_truth_sorted_indices[g]];
}
for (auto t = 0; t < num_iou_thresholds; ++t) {
for (auto d = 0; d < num_detections; ++d) {
// information about best match so far (match=-1 -> unmatched)
double best_iou = std::min(iou_thresholds[t], 1 - 1e-10);
int match = -1;
for (auto g = 0; g < num_ground_truth; ++g) {
// if this ground truth instance is already matched and not a
// crowd, it cannot be matched to another detection
if (ground_truth_matches[t * num_ground_truth + g] > 0 &&
!ground_truth_instances[ground_truth_sorted_indices[g]].is_crowd) {
continue;
}
// if detected instance matched to a regular ground truth
// instance, we can break on the first ground truth instance
// tagged as ignore (because they are sorted by the ignore tag)
if (match >= 0 && !ground_truth_ignores[match] &&
ground_truth_ignores[g]) {
break;
}
// if IOU overlap is the best so far, store the match appropriately
if (ious[d][ground_truth_sorted_indices[g]] >= best_iou) {
best_iou = ious[d][ground_truth_sorted_indices[g]];
match = g;
}
}
// if match was made, store id of match for both detection and
// ground truth
if (match >= 0) {
detection_ignores[t * num_detections + d] = ground_truth_ignores[match];
detection_matches[t * num_detections + d] =
ground_truth_instances[ground_truth_sorted_indices[match]].id;
ground_truth_matches[t * num_ground_truth + match] =
detection_instances[detection_sorted_indices[d]].id;
}
// set unmatched detections outside of area range to ignore
const InstanceAnnotation& detection =
detection_instances[detection_sorted_indices[d]];
detection_ignores[t * num_detections + d] =
detection_ignores[t * num_detections + d] ||
(detection_matches[t * num_detections + d] == 0 &&
(detection.area < area_range[0] || detection.area > area_range[1]));
}
}
// store detection score results
results->detection_scores.resize(detection_sorted_indices.size());
for (size_t d = 0; d < detection_sorted_indices.size(); ++d) {
results->detection_scores[d] =
detection_instances[detection_sorted_indices[d]].score;
}
}
std::vector<ImageEvaluation> EvaluateImages(
const std::vector<std::array<double, 2>>& area_ranges,
int max_detections,
const std::vector<double>& iou_thresholds,
const ImageCategoryInstances<std::vector<double>>& image_category_ious,
const ImageCategoryInstances<InstanceAnnotation>&
image_category_ground_truth_instances,
const ImageCategoryInstances<InstanceAnnotation>&
image_category_detection_instances) {
const int num_area_ranges = area_ranges.size();
const int num_images = image_category_ground_truth_instances.size();
const int num_categories =
image_category_ious.size() > 0 ? image_category_ious[0].size() : 0;
std::vector<uint64_t> detection_sorted_indices;
std::vector<uint64_t> ground_truth_sorted_indices;
std::vector<bool> ignores;
std::vector<ImageEvaluation> results_all(
num_images * num_area_ranges * num_categories);
// Store results for each image, category, and area range combination. Results
// for each IOU threshold are packed into the same ImageEvaluation object
for (auto i = 0; i < num_images; ++i) {
for (auto c = 0; c < num_categories; ++c) {
const std::vector<InstanceAnnotation>& ground_truth_instances =
image_category_ground_truth_instances[i][c];
const std::vector<InstanceAnnotation>& detection_instances =
image_category_detection_instances[i][c];
SortInstancesByDetectionScore(
detection_instances, &detection_sorted_indices);
if ((int)detection_sorted_indices.size() > max_detections) {
detection_sorted_indices.resize(max_detections);
}
for (size_t a = 0; a < area_ranges.size(); ++a) {
SortInstancesByIgnore(
area_ranges[a],
ground_truth_instances,
&ground_truth_sorted_indices,
&ignores);
MatchDetectionsToGroundTruth(
detection_instances,
detection_sorted_indices,
ground_truth_instances,
ground_truth_sorted_indices,
ignores,
image_category_ious[i][c],
iou_thresholds,
area_ranges[a],
&results_all
[c * num_area_ranges * num_images + a * num_images + i]);
}
}
}
return results_all;
}
// Convert a python list to a vector
template <typename T>
std::vector<T> list_to_vec(const py::list& l) {
std::vector<T> v(py::len(l));
for (int i = 0; i < (int)py::len(l); ++i) {
v[i] = l[i].cast<T>();
}
return v;
}
// Helper function to Accumulate()
// Considers the evaluation results applicable to a particular category, area
// range, and max_detections parameter setting, which begin at
// evaluations[evaluation_index]. Extracts a sorted list of length n of all
// applicable detection instances concatenated across all images in the dataset,
// which are represented by the outputs evaluation_indices, detection_scores,
// image_detection_indices, and detection_sorted_indices--all of which are
// length n. evaluation_indices[i] stores the applicable index into
// evaluations[] for instance i, which has detection score detection_score[i],
// and is the image_detection_indices[i]'th of the list of detections
// for the image containing i. detection_sorted_indices[] defines a sorted
// permutation of the 3 other outputs
int BuildSortedDetectionList(
const std::vector<ImageEvaluation>& evaluations,
const int64_t evaluation_index,
const int64_t num_images,
const int max_detections,
std::vector<uint64_t>* evaluation_indices,
std::vector<double>* detection_scores,
std::vector<uint64_t>* detection_sorted_indices,
std::vector<uint64_t>* image_detection_indices) {
assert(evaluations.size() >= evaluation_index + num_images);
// Extract a list of object instances of the applicable category, area
// range, and max detections requirements such that they can be sorted
image_detection_indices->clear();
evaluation_indices->clear();
detection_scores->clear();
image_detection_indices->reserve(num_images * max_detections);
evaluation_indices->reserve(num_images * max_detections);
detection_scores->reserve(num_images * max_detections);
int num_valid_ground_truth = 0;
for (auto i = 0; i < num_images; ++i) {
const ImageEvaluation& evaluation = evaluations[evaluation_index + i];
for (int d = 0;
d < (int)evaluation.detection_scores.size() && d < max_detections;
++d) { // detected instances
evaluation_indices->push_back(evaluation_index + i);
image_detection_indices->push_back(d);
detection_scores->push_back(evaluation.detection_scores[d]);
}
for (auto ground_truth_ignore : evaluation.ground_truth_ignores) {
if (!ground_truth_ignore) {
++num_valid_ground_truth;
}
}
}
// Sort detections by decreasing score, using stable sort to match
// python implementation
detection_sorted_indices->resize(detection_scores->size());
std::iota(
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
std::stable_sort(
detection_sorted_indices->begin(),
detection_sorted_indices->end(),
[&detection_scores](size_t j1, size_t j2) {
return (*detection_scores)[j1] > (*detection_scores)[j2];
});
return num_valid_ground_truth;
}
// Helper function to Accumulate()
// Compute a precision recall curve given a sorted list of detected instances
// encoded in evaluations, evaluation_indices, detection_scores,
// detection_sorted_indices, image_detection_indices (see
// BuildSortedDetectionList()). Using vectors precisions and recalls
// and temporary storage, output the results into precisions_out, recalls_out,
// and scores_out, which are large buffers containing many precion/recall curves
// for all possible parameter settings, with precisions_out_index and
// recalls_out_index defining the applicable indices to store results.
void ComputePrecisionRecallCurve(
const int64_t precisions_out_index,
const int64_t precisions_out_stride,
const int64_t recalls_out_index,
const std::vector<double>& recall_thresholds,
const int iou_threshold_index,
const int num_iou_thresholds,
const int num_valid_ground_truth,
const std::vector<ImageEvaluation>& evaluations,
const std::vector<uint64_t>& evaluation_indices,
const std::vector<double>& detection_scores,
const std::vector<uint64_t>& detection_sorted_indices,
const std::vector<uint64_t>& image_detection_indices,
std::vector<double>* precisions,
std::vector<double>* recalls,
std::vector<double>* precisions_out,
std::vector<double>* scores_out,
std::vector<double>* recalls_out) {
assert(recalls_out->size() > recalls_out_index);
// Compute precision/recall for each instance in the sorted list of detections
int64_t true_positives_sum = 0, false_positives_sum = 0;
precisions->clear();
recalls->clear();
precisions->reserve(detection_sorted_indices.size());
recalls->reserve(detection_sorted_indices.size());
assert(!evaluations.empty() || detection_sorted_indices.empty());
for (auto detection_sorted_index : detection_sorted_indices) {
const ImageEvaluation& evaluation =
evaluations[evaluation_indices[detection_sorted_index]];
const auto num_detections =
evaluation.detection_matches.size() / num_iou_thresholds;
const auto detection_index = iou_threshold_index * num_detections +
image_detection_indices[detection_sorted_index];
assert(evaluation.detection_matches.size() > detection_index);
assert(evaluation.detection_ignores.size() > detection_index);
const int64_t detection_match =
evaluation.detection_matches[detection_index];
const bool detection_ignores =
evaluation.detection_ignores[detection_index];
const auto true_positive = detection_match > 0 && !detection_ignores;
const auto false_positive = detection_match == 0 && !detection_ignores;
if (true_positive) {
++true_positives_sum;
}
if (false_positive) {
++false_positives_sum;
}
const double recall =
static_cast<double>(true_positives_sum) / num_valid_ground_truth;
recalls->push_back(recall);
const int64_t num_valid_detections =
true_positives_sum + false_positives_sum;
const double precision = num_valid_detections > 0
? static_cast<double>(true_positives_sum) / num_valid_detections
: 0.0;
precisions->push_back(precision);
}
(*recalls_out)[recalls_out_index] = !recalls->empty() ? recalls->back() : 0;
for (int64_t i = static_cast<int64_t>(precisions->size()) - 1; i > 0; --i) {
if ((*precisions)[i] > (*precisions)[i - 1]) {
(*precisions)[i - 1] = (*precisions)[i];
}
}
// Sample the per instance precision/recall list at each recall threshold
for (size_t r = 0; r < recall_thresholds.size(); ++r) {
// first index in recalls >= recall_thresholds[r]
std::vector<double>::iterator low = std::lower_bound(
recalls->begin(), recalls->end(), recall_thresholds[r]);
size_t precisions_index = low - recalls->begin();
const auto results_ind = precisions_out_index + r * precisions_out_stride;
assert(results_ind < precisions_out->size());
assert(results_ind < scores_out->size());
if (precisions_index < precisions->size()) {
(*precisions_out)[results_ind] = (*precisions)[precisions_index];
(*scores_out)[results_ind] =
detection_scores[detection_sorted_indices[precisions_index]];
} else {
(*precisions_out)[results_ind] = 0;
(*scores_out)[results_ind] = 0;
}
}
}
py::dict Accumulate(
const py::object& params,
const std::vector<ImageEvaluation>& evaluations) {
const std::vector<double> recall_thresholds =
list_to_vec<double>(params.attr("recThrs"));
const std::vector<int> max_detections =
list_to_vec<int>(params.attr("maxDets"));
const int num_iou_thresholds = py::len(params.attr("iouThrs"));
const int num_recall_thresholds = py::len(params.attr("recThrs"));
const int num_categories = params.attr("useCats").cast<int>() == 1
? py::len(params.attr("catIds"))
: 1;
const int num_area_ranges = py::len(params.attr("areaRng"));
const int num_max_detections = py::len(params.attr("maxDets"));
const int num_images = py::len(params.attr("imgIds"));
std::vector<double> precisions_out(
num_iou_thresholds * num_recall_thresholds * num_categories *
num_area_ranges * num_max_detections,
-1);
std::vector<double> recalls_out(
num_iou_thresholds * num_categories * num_area_ranges *
num_max_detections,
-1);
std::vector<double> scores_out(
num_iou_thresholds * num_recall_thresholds * num_categories *
num_area_ranges * num_max_detections,
-1);
// Consider the list of all detected instances in the entire dataset in one
// large list. evaluation_indices, detection_scores,
// image_detection_indices, and detection_sorted_indices all have the same
// length as this list, such that each entry corresponds to one detected
// instance
std::vector<uint64_t> evaluation_indices; // indices into evaluations[]
std::vector<double> detection_scores; // detection scores of each instance
std::vector<uint64_t> detection_sorted_indices; // sorted indices of all
// instances in the dataset
std::vector<uint64_t>
image_detection_indices; // indices into the list of detected instances in
// the same image as each instance
std::vector<double> precisions, recalls;
for (auto c = 0; c < num_categories; ++c) {
for (auto a = 0; a < num_area_ranges; ++a) {
for (auto m = 0; m < num_max_detections; ++m) {
// The COCO PythonAPI assumes evaluations[] (the return value of
// COCOeval::EvaluateImages() is one long list storing results for each
// combination of category, area range, and image id, with categories in
// the outermost loop and images in the innermost loop.
const int64_t evaluations_index =
c * num_area_ranges * num_images + a * num_images;
int num_valid_ground_truth = BuildSortedDetectionList(
evaluations,
evaluations_index,
num_images,
max_detections[m],
&evaluation_indices,
&detection_scores,
&detection_sorted_indices,
&image_detection_indices);
if (num_valid_ground_truth == 0) {
continue;
}
for (auto t = 0; t < num_iou_thresholds; ++t) {
// recalls_out is a flattened vectors representing a
// num_iou_thresholds X num_categories X num_area_ranges X
// num_max_detections matrix
const int64_t recalls_out_index =
t * num_categories * num_area_ranges * num_max_detections +
c * num_area_ranges * num_max_detections +
a * num_max_detections + m;
// precisions_out and scores_out are flattened vectors
// representing a num_iou_thresholds X num_recall_thresholds X
// num_categories X num_area_ranges X num_max_detections matrix
const int64_t precisions_out_stride =
num_categories * num_area_ranges * num_max_detections;
const int64_t precisions_out_index = t * num_recall_thresholds *
num_categories * num_area_ranges * num_max_detections +
c * num_area_ranges * num_max_detections +
a * num_max_detections + m;
ComputePrecisionRecallCurve(
precisions_out_index,
precisions_out_stride,
recalls_out_index,
recall_thresholds,
t,
num_iou_thresholds,
num_valid_ground_truth,
evaluations,
evaluation_indices,
detection_scores,
detection_sorted_indices,
image_detection_indices,
&precisions,
&recalls,
&precisions_out,
&scores_out,
&recalls_out);
}
}
}
}
time_t rawtime;
struct tm local_time;
std::array<char, 200> buffer;
time(&rawtime);
#ifdef _WIN32
localtime_s(&local_time, &rawtime);
#else
localtime_r(&rawtime, &local_time);
#endif
strftime(
buffer.data(), 200, "%Y-%m-%d %H:%num_max_detections:%S", &local_time);
return py::dict(
"params"_a = params,
"counts"_a = std::vector<int64_t>(
{num_iou_thresholds,
num_recall_thresholds,
num_categories,
num_area_ranges,
num_max_detections}),
"date"_a = buffer,
"precision"_a = precisions_out,
"recall"_a = recalls_out,
"scores"_a = scores_out);
}
} // namespace COCOeval
} // namespace detectron2
|