Spaces:
Sleeping
Sleeping
divimund95
commited on
Commit
•
6f3f66a
1
Parent(s):
ba3e3be
disable tensorflow library
Browse files- app.py +39 -21
- requirements.txt +3 -2
- setup_local.sh +15 -5
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
from omegaconf import OmegaConf
|
7 |
|
8 |
import subprocess
|
@@ -14,6 +14,7 @@ sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lama')
|
|
14 |
|
15 |
from lama.saicinpainting.evaluation.refinement import refine_predict
|
16 |
from lama.saicinpainting.training.trainers import load_checkpoint
|
|
|
17 |
|
18 |
|
19 |
# Load the model
|
@@ -43,25 +44,20 @@ def get_inpaint_model():
|
|
43 |
model.to(device)
|
44 |
return model, predict_config
|
45 |
|
46 |
-
|
|
|
47 |
"""
|
48 |
Performs image inpainting on the input image using the provided mask.
|
49 |
Args: input_dict containing 'background' (image) and 'layers' (mask)
|
50 |
Returns: Tuple of (output_image, input_mask)
|
51 |
"""
|
52 |
-
input_image = input_dict["background"].convert("RGB")
|
53 |
input_mask = pil_to_binary_mask(input_dict['layers'][0])
|
54 |
|
55 |
-
# TODO: check if this is correct; (C,H,W) or (H,W,C)
|
56 |
-
|
57 |
-
# batch = dict(image=input_image, mask=input_mask[None, ...])
|
58 |
np_input_image = np.transpose(np.array(input_image), (2, 0, 1))
|
59 |
np_input_mask = np.array(input_mask)[None, :, :] # Add channel dimension for grayscale images
|
60 |
batch = dict(image=np_input_image, mask=np_input_mask)
|
61 |
|
62 |
-
print('lol', batch['image'].shape)
|
63 |
-
print('lol', batch['mask'].shape)
|
64 |
-
|
65 |
inpaint_model, predict_config = get_inpaint_model()
|
66 |
device = torch.device(predict_config.device)
|
67 |
|
@@ -69,8 +65,20 @@ def inpaint(input_dict):
|
|
69 |
batch['image'] = torch.tensor(pad_img_to_modulo(batch['image'], predict_config.dataset.pad_out_to_modulo))[None].to(device)
|
70 |
batch['mask'] = torch.tensor(pad_img_to_modulo(batch['mask'], predict_config.dataset.pad_out_to_modulo))[None].float().to(device)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
76 |
output_image = Image.fromarray(cur_res)
|
@@ -88,7 +96,7 @@ def pad_img_to_modulo(img, mod):
|
|
88 |
out_width = ceil_modulo(width, mod)
|
89 |
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric')
|
90 |
|
91 |
-
def pil_to_binary_mask(pil_image, threshold=0):
|
92 |
"""
|
93 |
Converts a PIL image to a binary mask.
|
94 |
|
@@ -107,25 +115,35 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
107 |
for j in range(binary_mask.shape[1]):
|
108 |
if binary_mask[i,j] == True :
|
109 |
mask[i,j] = 1
|
110 |
-
mask = (mask*
|
111 |
output_mask = Image.fromarray(mask)
|
112 |
# Convert mask to grayscale
|
113 |
return output_mask.convert("L")
|
114 |
|
|
|
|
|
115 |
# Create Gradio interface
|
116 |
-
with gr.Blocks() as demo:
|
117 |
gr.Markdown("# Image Inpainting")
|
118 |
gr.Markdown("Upload an image and draw a mask to remove unwanted objects.")
|
119 |
|
120 |
with gr.Row():
|
121 |
-
input_image = gr.ImageEditor(type="pil", label='Input image & Mask', interactive=True, height="auto", width="auto")
|
122 |
-
output_image = gr.Image(type="pil", label="Output Image")
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
inpaint_button
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
# Launch the interface
|
130 |
if __name__ == "__main__":
|
131 |
-
demo.launch()
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
import spaces
|
6 |
from omegaconf import OmegaConf
|
7 |
|
8 |
import subprocess
|
|
|
14 |
|
15 |
from lama.saicinpainting.evaluation.refinement import refine_predict
|
16 |
from lama.saicinpainting.training.trainers import load_checkpoint
|
17 |
+
from lama.saicinpainting.evaluation.utils import move_to_device
|
18 |
|
19 |
|
20 |
# Load the model
|
|
|
44 |
model.to(device)
|
45 |
return model, predict_config
|
46 |
|
47 |
+
@spaces.GPU
|
48 |
+
def inpaint(input_dict, refinement_enabled=False):
|
49 |
"""
|
50 |
Performs image inpainting on the input image using the provided mask.
|
51 |
Args: input_dict containing 'background' (image) and 'layers' (mask)
|
52 |
Returns: Tuple of (output_image, input_mask)
|
53 |
"""
|
54 |
+
input_image = np.array(input_dict["background"].convert("RGB")).astype('float32') / 255
|
55 |
input_mask = pil_to_binary_mask(input_dict['layers'][0])
|
56 |
|
|
|
|
|
|
|
57 |
np_input_image = np.transpose(np.array(input_image), (2, 0, 1))
|
58 |
np_input_mask = np.array(input_mask)[None, :, :] # Add channel dimension for grayscale images
|
59 |
batch = dict(image=np_input_image, mask=np_input_mask)
|
60 |
|
|
|
|
|
|
|
61 |
inpaint_model, predict_config = get_inpaint_model()
|
62 |
device = torch.device(predict_config.device)
|
63 |
|
|
|
65 |
batch['image'] = torch.tensor(pad_img_to_modulo(batch['image'], predict_config.dataset.pad_out_to_modulo))[None].to(device)
|
66 |
batch['mask'] = torch.tensor(pad_img_to_modulo(batch['mask'], predict_config.dataset.pad_out_to_modulo))[None].float().to(device)
|
67 |
|
68 |
+
|
69 |
+
if refinement_enabled is True:
|
70 |
+
cur_res = refine_predict(batch, inpaint_model, **predict_config.refiner)
|
71 |
+
cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy()
|
72 |
+
else:
|
73 |
+
with torch.no_grad():
|
74 |
+
batch = move_to_device(batch, device)
|
75 |
+
batch['mask'] = (batch['mask'] > 0) * 1
|
76 |
+
batch = inpaint_model(batch)
|
77 |
+
cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
|
78 |
+
unpad_to_size = batch.get('unpad_to_size', None)
|
79 |
+
if unpad_to_size is not None:
|
80 |
+
orig_height, orig_width = unpad_to_size
|
81 |
+
cur_res = cur_res[:orig_height, :orig_width]
|
82 |
|
83 |
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
|
84 |
output_image = Image.fromarray(cur_res)
|
|
|
96 |
out_width = ceil_modulo(width, mod)
|
97 |
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric')
|
98 |
|
99 |
+
def pil_to_binary_mask(pil_image, threshold=0, max_scale=1):
|
100 |
"""
|
101 |
Converts a PIL image to a binary mask.
|
102 |
|
|
|
115 |
for j in range(binary_mask.shape[1]):
|
116 |
if binary_mask[i,j] == True :
|
117 |
mask[i,j] = 1
|
118 |
+
mask = (mask*max_scale).astype(np.uint8)
|
119 |
output_mask = Image.fromarray(mask)
|
120 |
# Convert mask to grayscale
|
121 |
return output_mask.convert("L")
|
122 |
|
123 |
+
css = ".output-image, .input-image, .image-preview {height: 600px !important}"
|
124 |
+
|
125 |
# Create Gradio interface
|
126 |
+
with gr.Blocks(css=css) as demo:
|
127 |
gr.Markdown("# Image Inpainting")
|
128 |
gr.Markdown("Upload an image and draw a mask to remove unwanted objects.")
|
129 |
|
130 |
with gr.Row():
|
131 |
+
input_image = gr.ImageEditor(type="pil", label='Input image & Mask', interactive=True, height="auto", width="auto", brush=gr.Brush(colors=['#f2e2cd'], default_size=25))
|
132 |
+
output_image = gr.Image(type="pil", label="Output Image", height="auto", width="auto")
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
refine_checkbox = gr.Checkbox(label="Enable Refinement[SLOWER BUT BETTER]", value=False)
|
136 |
+
inpaint_button = gr.Button("Inpaint")
|
137 |
+
|
138 |
+
def inpaint_with_refinement(image, enable_refinement):
|
139 |
+
return inpaint(image, refinement_enabled=enable_refinement)
|
140 |
|
141 |
+
inpaint_button.click(
|
142 |
+
fn=inpaint_with_refinement,
|
143 |
+
inputs=[input_image, refine_checkbox],
|
144 |
+
outputs=[output_image]
|
145 |
+
)
|
146 |
|
147 |
# Launch the interface
|
148 |
if __name__ == "__main__":
|
149 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
gradio
|
2 |
-
numpy
|
3 |
pillow
|
4 |
pyyaml
|
5 |
tqdm
|
@@ -7,7 +7,7 @@ easydict==1.9.0
|
|
7 |
scikit-image
|
8 |
scikit-learn
|
9 |
opencv-python
|
10 |
-
tensorflow
|
11 |
joblib
|
12 |
matplotlib
|
13 |
pandas
|
@@ -21,3 +21,4 @@ packaging
|
|
21 |
wldhx.yadisk-direct
|
22 |
torch
|
23 |
torchvision
|
|
|
|
1 |
gradio
|
2 |
+
numpy==1.26.4
|
3 |
pillow
|
4 |
pyyaml
|
5 |
tqdm
|
|
|
7 |
scikit-image
|
8 |
scikit-learn
|
9 |
opencv-python
|
10 |
+
# tensorflow
|
11 |
joblib
|
12 |
matplotlib
|
13 |
pandas
|
|
|
21 |
wldhx.yadisk-direct
|
22 |
torch
|
23 |
torchvision
|
24 |
+
spaces
|
setup_local.sh
CHANGED
@@ -6,9 +6,19 @@ conda install pytorch torchvision -c pytorch -y
|
|
6 |
pip install -r requirements.txt
|
7 |
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
6 |
pip install -r requirements.txt
|
7 |
|
8 |
|
9 |
+
# Check if lama directory exists
|
10 |
+
if [ ! -d "lama" ]; then
|
11 |
+
# Clone dependency repos
|
12 |
+
git clone https://github.com/advimman/lama.git
|
13 |
+
else
|
14 |
+
echo "lama directory already exists. Skipping clone."
|
15 |
+
fi
|
16 |
|
17 |
+
# Check if big-lama.zip or big-lama directory exists
|
18 |
+
if [ ! -f "big-lama.zip" ] && [ ! -d "big-lama" ]; then
|
19 |
+
# Download big-lama model
|
20 |
+
curl -LJO https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip
|
21 |
+
unzip big-lama.zip
|
22 |
+
else
|
23 |
+
echo "big-lama model already exists. Skipping download and extraction."
|
24 |
+
fi
|