Spaces:
Running
Running
import io | |
import os | |
import requests | |
import zipfile | |
import natsort | |
import gc | |
from PIL import Image | |
from PIL import UnidentifiedImageError | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
from stqdm import stqdm | |
import streamlit as st | |
from jax import numpy as jnp | |
import transformers | |
from transformers import AutoTokenizer | |
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor | |
from torchvision.transforms.functional import InterpolationMode | |
from modeling_hybrid_clip import FlaxHybridCLIP | |
import utils | |
def get_model(): | |
return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian") | |
def get_tokenizer(): | |
return AutoTokenizer.from_pretrained( | |
"dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True | |
) | |
def download_images(): | |
# from sentence_transformers import SentenceTransformer, util | |
img_folder = "photos/" | |
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0: | |
os.makedirs(img_folder, exist_ok=True) | |
photo_filename = "unsplash-25k-photos.zip" | |
if not os.path.exists(photo_filename): # Download dataset if does not exist | |
print(f"Downloading {photo_filename}...") | |
response = requests.get( | |
f"http://sbert.net/datasets/{photo_filename}", stream=True | |
) | |
total_size_in_bytes = int(response.headers.get("content-length", 0)) | |
block_size = 1024 # 1 Kb | |
progress_bar = stqdm( | |
total=total_size_in_bytes | |
) # , unit='iB', unit_scale=True | |
content = io.BytesIO() | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
content.write(data) | |
progress_bar.close() | |
z = zipfile.ZipFile(content) | |
# content.close() | |
print("Extracting the dataset...") | |
z.extractall(path=img_folder) | |
print("Done.") | |
def get_image_features(dataset_name): | |
if dataset_name == "Unsplash": | |
return jnp.load("static/features/features.npy") | |
else: | |
return jnp.load("static/features/CC_embeddings.npy") | |
def load_urls(dataset_name): | |
if dataset_name == "CC": | |
with open("static/CC_urls.txt") as fp: | |
urls = [l.strip() for l in fp.readlines()] | |
return urls | |
else: | |
ValueError(f"{dataset_name} not supported here") | |
def get_image_transform(image_size): | |
return Compose( | |
[ | |
Resize([image_size], interpolation=InterpolationMode.BICUBIC), | |
CenterCrop(image_size), | |
ToTensor(), | |
Normalize( | |
(0.48145466, 0.4578275, 0.40821073), | |
(0.26862954, 0.26130258, 0.27577711), | |
), | |
] | |
) | |
headers = { | |
#'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36', | |
'User-Agent': 'Googlebot-Image/1.0', # Pretend to be googlebot | |
'X-Forwarded-For': '64.18.15.200' | |
} | |
def app(): | |
#st.title("From Text to Image") | |
st.markdown("<h1 style='text-align: center; color: #CD212A;'> Image Retrieval </h1>", unsafe_allow_html=True) | |
st.markdown("<h2 style='text-align: center; color: #008C45; font-weight:bold;'> Text to Image </h2>", unsafe_allow_html=True) | |
st.markdown( | |
""" | |
### π Ciao! | |
Here you can search for ~150.000 images in the Conceptual Captions dataset (CC) or in the Unsplash 25k Photos dataset. | |
Even though we did not train on any of these images you will see most queries make sense. When you see errors, there might be two possibilities: | |
the model is answering in a wrong way or the image you are looking for are not in the dataset and the model is giving you the best answer it can get. | |
π€ Italian mode on! π€ | |
You can choose one of our examples down below... | |
""" | |
) | |
suggestions = [ | |
"Un gatto", | |
"Due gatti", | |
"Un fiore giallo", | |
"Un fiore blu", | |
"Una coppia in montagna", | |
"Una coppia al tramonto" | |
] | |
sugg_idx = -1 | |
col1, col2, col3, col4, col5, col6 = st.beta_columns([1, 1, 1.2, 1.2, 1.4, 1.4]) | |
with col1: | |
if st.button(suggestions[0]): | |
sugg_idx = 0 | |
with col2: | |
if st.button(suggestions[1]): | |
sugg_idx = 1 | |
with col3: | |
if st.button(suggestions[2]): | |
sugg_idx = 2 | |
with col4: | |
if st.button(suggestions[3]): | |
sugg_idx = 3 | |
with col5: | |
if st.button(suggestions[4]): | |
sugg_idx = 4 | |
with col6: | |
if st.button(suggestions[5]): | |
sugg_idx = 5 | |
col1, col2 = st.beta_columns([3, 1]) | |
with col1: | |
query = st.text_input("... or insert an Italian query text") | |
with col2: | |
dataset_name = st.selectbox("IR dataset", ["CC", "Unsplash"]) | |
query = suggestions[sugg_idx] if sugg_idx > -1 else query if query else "" | |
if query: | |
with st.spinner("Computing..."): | |
if dataset_name == "Unsplash": | |
download_images() | |
image_features = get_image_features(dataset_name) | |
model = get_model() | |
tokenizer = get_tokenizer() | |
if dataset_name == "Unsplash": | |
image_size = model.config.vision_config.image_size | |
dataset = utils.CustomDataSet( | |
"photos/", transform=get_image_transform(image_size) | |
) | |
elif dataset_name == "CC": | |
dataset = load_urls(dataset_name) | |
else: | |
raise ValueError() | |
N = 3 | |
image_paths = utils.find_image( | |
query, model, dataset, tokenizer, image_features, N, dataset_name | |
) | |
for i, image_url in enumerate(image_paths): | |
try: | |
if dataset_name == "Unsplash": | |
st.image(image_url) | |
elif dataset_name == "CC": | |
image_raw = requests.get(image_url, stream=True, allow_redirects=True, headers=headers).raw | |
image = Image.open(image_raw).convert("RGB") | |
st.image(image, use_column_width=True) | |
break | |
except (UnidentifiedImageError) as e: | |
if i == N - 1: | |
st.text(f'Tried to show {N} different image URLS but none of them were reachabele.\ | |
Maybe try a different query?') | |
gc.collect() | |
sugg_idx = -1 | |