Spaces:
Running
Running
from home import read_markdown_file | |
import streamlit as st | |
def app(): | |
st.title("Examples & Applications") | |
st.write( | |
""" | |
Even though we trained the Italian CLIP model on way less examples than the original | |
OpenAI's CLIP, our training choices and quality datasets led to impressive results! | |
Here, we present some of **the most impressive text-image associations** learned by our model. | |
Remember you can head to the **Text to Image** section of the demo at any time to test your own🤌 Italian queries! | |
""" | |
) | |
st.markdown("### 1. Actors in Scenes") | |
st.markdown("These examples were taken from the CC dataset.") | |
st.subheader("Una coppia") | |
st.markdown("*A couple*") | |
st.image("static/img/examples/couple_0.jpeg", use_column_width=True) | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("Una coppia con il tramonto sullo sfondo") | |
col1.markdown("*A couple with the sunset in the background*") | |
col1.image("static/img/examples/couple_1.jpeg", use_column_width=True) | |
col2.subheader("Una coppia che passeggia sulla spiaggia") | |
col2.markdown("*A couple walking on the beach*") | |
col2.image("static/img/examples/couple_2.jpeg", use_column_width=True) | |
st.subheader("Una coppia che passeggia sulla spiaggia al tramonto") | |
st.markdown("*A couple walking on the beach at sunset*") | |
st.image("static/img/examples/couple_3.jpeg", use_column_width=True) | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("Un bambino con un biberon") | |
col1.markdown("*A baby with a bottle*") | |
col1.image("static/img/examples/bambino_biberon.jpeg", use_column_width=True) | |
col2.subheader("Un bambino con un gelato in spiaggia") | |
col2.markdown("*A child with an ice cream on the beach*") | |
col2.image( | |
"static/img/examples/bambino_gelato_spiaggia.jpeg", use_column_width=True | |
) | |
st.markdown("### 2. Dresses") | |
st.markdown("These examples were taken from the Unsplash dataset.") | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("Un vestito primaverile") | |
col1.markdown("*A dress for the spring*") | |
col1.image("static/img/examples/vestito1.png", use_column_width=True) | |
col2.subheader("Un vestito autunnale") | |
col2.markdown("*A dress for the autumn*") | |
col2.image("static/img/examples/vestito_autunnale.png", use_column_width=True) | |
st.markdown("### 3. Chairs with different styles") | |
st.markdown("These examples were taken from the CC dataset.") | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("Una sedia semplice") | |
col1.markdown("*A simple chair*") | |
col1.image("static/img/examples/sedia_semplice.jpeg", use_column_width=True) | |
col2.subheader("Una sedia regale") | |
col2.markdown("*A royal chair*") | |
col2.image("static/img/examples/sedia_regale.jpeg", use_column_width=True) | |
col1, col2 = st.beta_columns(2) | |
col1.subheader("Una sedia moderna") | |
col1.markdown("*A modern chair*") | |
col1.image("static/img/examples/sedia_moderna.jpeg", use_column_width=True) | |
col2.subheader("Una sedia rustica") | |
col2.markdown("*A rustic chair*") | |
col2.image("static/img/examples/sedia_rustica.jpeg", use_column_width=True) | |
st.markdown('## Localization') | |
st.subheader("Un gatto") | |
st.markdown("*A cat*") | |
st.image("static/img/examples/un_gatto.png", use_column_width=True) | |
st.subheader("Un gatto") | |
st.markdown("*A cat*") | |
st.image("static/img/examples/due_gatti.png", use_column_width=True) | |
st.subheader("Un bambino") | |
st.markdown("*A child*") | |
st.image("static/img/examples/child_on_slide.png", use_column_width=True) | |
st.markdown("## Image Classification") | |
st.markdown( | |
"We report this cool example provided by the " | |
"[DALLE-mini team](https://github.com/borisdayma/dalle-mini). " | |
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?" | |
) | |
st.image("static/img/examples/dalle_mini.png", use_column_width=True) | |
st.markdown( | |
"It seems it's half an armchair and half an avocado! We thank the DALL-E mini team for the great idea :)" | |
) | |