File size: 5,072 Bytes
ce649db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ad46a
 
 
 
 
ce649db
c5ad46a
 
 
ce649db
 
 
 
 
 
 
 
 
 
 
 
c5ad46a
 
 
 
ce649db
c5ad46a
 
 
ce649db
 
 
 
 
 
 
 
 
 
 
 
 
c5ad46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce649db
 
bca94f8
ce649db
bca94f8
 
 
 
 
ce649db
bca94f8
 
 
ce649db
bca94f8
 
ce649db
c5ad46a
0789e97
 
 
 
 
 
 
c5ad46a
0789e97
c5ad46a
0789e97
c5ad46a
 
 
 
 
0789e97
c5ad46a
 
 
0789e97
c5ad46a
 
 
 
 
 
 
0789e97
ce649db
c5ad46a
 
ce649db
 
c5ad46a
 
ce649db
c5ad46a
ce649db
 
 
c5ad46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce649db
f920e44
c5ad46a
ce649db
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import io
import os
import requests
import zipfile
import natsort

os.environ["TOKENIZERS_PARALLELISM"] = "false"
from stqdm import stqdm
import streamlit as st
from jax import numpy as jnp
import transformers
from transformers import AutoTokenizer
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor
from torchvision.transforms.functional import InterpolationMode
from modeling_hybrid_clip import FlaxHybridCLIP

import utils


@st.cache(hash_funcs={FlaxHybridCLIP: lambda _: None})
def get_model():
    return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")


@st.cache(
    hash_funcs={
        transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: lambda _: None
    }
)
def get_tokenizer():
    return AutoTokenizer.from_pretrained(
        "dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True
    )


@st.cache(suppress_st_warning=True)
def download_images():
    # from sentence_transformers import SentenceTransformer, util
    img_folder = "photos/"
    if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
        os.makedirs(img_folder, exist_ok=True)

        photo_filename = "unsplash-25k-photos.zip"
        if not os.path.exists(photo_filename):  # Download dataset if does not exist
            print(f"Downloading {photo_filename}...")
            response = requests.get(
                f"http://sbert.net/datasets/{photo_filename}", stream=True
            )
            total_size_in_bytes = int(response.headers.get("content-length", 0))
            block_size = 1024  # 1 Kb
            progress_bar = stqdm(
                total=total_size_in_bytes
            )  # , unit='iB', unit_scale=True
            content = io.BytesIO()
            for data in response.iter_content(block_size):
                progress_bar.update(len(data))
                content.write(data)
            progress_bar.close()
            z = zipfile.ZipFile(content)
            # content.close()
            print("Extracting the dataset...")
            z.extractall(path=img_folder)
    print("Done.")


@st.cache()
def get_image_features(dataset_name):
    if dataset_name == "Unsplash":
        return jnp.load("static/features/features.npy")
    else:
        return jnp.load("static/features/CC_val_embeddings.npy")


@st.cache()
def load_urls(dataset_name):
    if dataset_name == "CC":
        with open("static/CC_val_urls.txt") as fp:
            urls = [l.strip() for l in fp.readlines()]
        return urls
    else:
        ValueError(f"{dataset_name} not supported here")


def app():

    st.title("From Text to Image")
    st.markdown(
        """
    
        ### 👋 Ciao!

        Here you can search for images in the Unsplash 25k Photos dataset.
        
        🤌 Italian mode on! 🤌

        """
    )

    if "suggestion" not in st.session_state:
        st.session_state.suggestion = ""

    def update_query(value=""):
        st.session_state.suggestion = value

    col1, col2, col3, col4 = st.beta_columns(4)
    with col1:
        st.button("Un gatto", on_click=update_query, kwargs=dict(value="Un gatto"))
    with col2:
        st.button("Due gatti", on_click=update_query, kwargs=dict(value="Due gatti"))
    with col3:
        st.button(
            "Un fiore giallo",
            on_click=update_query,
            kwargs=dict(value="Un fiore giallo"),
        )
    with col4:
        st.button(
            "Un fiore blu", on_click=update_query, kwargs=dict(value="Un fiore blu")
        )

    col1, col2 = st.beta_columns([3, 1])
    with col1:
        query = st.text_input(
            "Insert an italian query text here...", st.session_state.suggestion
        )
    with col2:
        dataset_name = st.selectbox("IR dataset", ["Unsplash", "CC"])

    if query:
        with st.spinner("Computing..."):

            model = get_model()

            if dataset_name == "Unsplash":
                download_images()

            image_features = get_image_features(dataset_name)
            model = get_model()
            tokenizer = get_tokenizer()

            if dataset_name == "Unsplash":
                image_size = model.config.vision_config.image_size
                val_preprocess = Compose(
                    [
                        Resize([image_size], interpolation=InterpolationMode.BICUBIC),
                        CenterCrop(image_size),
                        ToTensor(),
                        Normalize(
                            (0.48145466, 0.4578275, 0.40821073),
                            (0.26862954, 0.26130258, 0.27577711),
                        ),
                    ]
                )
                dataset = utils.CustomDataSet("photos/", transform=val_preprocess)
            elif dataset_name == "CC":
                dataset = load_urls(dataset_name)
            else:
                raise ValueError()

            image_paths = utils.find_image(
                query, model, dataset, tokenizer, image_features, 2, dataset_name
            )

        st.image(image_paths)