Spaces:
Runtime error
Runtime error
initial commit to RL stats
Browse files
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
app.css
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
.infoPoint h1 {
|
3 |
+
font-size: 30px;
|
4 |
+
text-decoration: bold;
|
5 |
+
|
6 |
+
}
|
7 |
+
|
8 |
+
a {
|
9 |
+
text-decoration: underline;
|
10 |
+
color: #1f3b54 ;
|
11 |
+
}
|
12 |
+
|
13 |
+
table {
|
14 |
+
|
15 |
+
margin: 25px 0;
|
16 |
+
font-size: 0.9em;
|
17 |
+
font-family: sans-serif;
|
18 |
+
min-width: 400px;
|
19 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.15);
|
20 |
+
}
|
21 |
+
|
22 |
+
table th,
|
23 |
+
table td {
|
24 |
+
padding: 12px 15px;
|
25 |
+
}
|
26 |
+
|
27 |
+
tr {
|
28 |
+
text-align: left;
|
29 |
+
}
|
30 |
+
thead tr {
|
31 |
+
text-align: left;
|
32 |
+
}
|
app.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from utils import *
|
5 |
+
import gradio as gr
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download
|
7 |
+
from huggingface_hub.repocard import metadata_load
|
8 |
+
|
9 |
+
|
10 |
+
class DeepRL_Leaderboard:
|
11 |
+
def __init__(self) -> None:
|
12 |
+
self.leaderboard= {}
|
13 |
+
|
14 |
+
def add_leaderboard(self,id=None, title=None):
|
15 |
+
if id is not None and title is not None:
|
16 |
+
id = id.strip()
|
17 |
+
title = title.strip()
|
18 |
+
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
|
19 |
+
def get_data(self):
|
20 |
+
return self.leaderboard
|
21 |
+
|
22 |
+
def get_ids(self):
|
23 |
+
return list(self.leaderboard.keys())
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# CSS file for the
|
28 |
+
with open('app.css','r') as f:
|
29 |
+
BLOCK_CSS = f.read()
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
LOADED_MODEL_IDS = {}
|
34 |
+
|
35 |
+
def get_data(rl_env):
|
36 |
+
global LOADED_MODEL_IDS
|
37 |
+
data = []
|
38 |
+
model_ids = get_model_ids(rl_env)
|
39 |
+
LOADED_MODEL_IDS[rl_env]=model_ids
|
40 |
+
|
41 |
+
for model_id in tqdm(model_ids):
|
42 |
+
meta = get_metadata(model_id)
|
43 |
+
if meta is None:
|
44 |
+
continue
|
45 |
+
row={}
|
46 |
+
row["metadata"] = meta
|
47 |
+
|
48 |
+
data.append(row)
|
49 |
+
return pd.DataFrame.from_records(data)
|
50 |
+
|
51 |
+
def get_data_per_env(rl_env):
|
52 |
+
dataframe = get_data(rl_env)
|
53 |
+
return dataframe,dataframe.empty
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
rl_leaderboard = DeepRL_Leaderboard()
|
58 |
+
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard π")
|
59 |
+
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard π")
|
60 |
+
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard π")
|
61 |
+
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard π")
|
62 |
+
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard π')
|
63 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard π')
|
64 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard π')
|
65 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard π')
|
66 |
+
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard π')
|
67 |
+
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard π')
|
68 |
+
|
69 |
+
RL_ENVS = rl_leaderboard.get_ids()
|
70 |
+
RL_DETAILS = rl_leaderboard.get_data()
|
71 |
+
|
72 |
+
|
73 |
+
def update_data(rl_env):
|
74 |
+
global LOADED_MODEL_IDS
|
75 |
+
data = []
|
76 |
+
model_ids = [x for x in get_model_ids(rl_env) if x not in LOADED_MODEL_IDS[rl_env]]
|
77 |
+
LOADED_MODEL_IDS[rl_env]+=model_ids
|
78 |
+
|
79 |
+
for model_id in tqdm(model_ids):
|
80 |
+
meta = get_metadata(model_id)
|
81 |
+
if meta is None:
|
82 |
+
continue
|
83 |
+
row = {}
|
84 |
+
row["metadata"] = meta
|
85 |
+
data.append(row)
|
86 |
+
return pd.DataFrame.from_records(data)
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def update_data_per_env(rl_env):
|
91 |
+
global RL_DETAILS
|
92 |
+
|
93 |
+
old_dataframe,_ = RL_DETAILS[rl_env]['data']
|
94 |
+
new_dataframe = update_data(rl_env)
|
95 |
+
|
96 |
+
new_dataframe = new_dataframe.fillna("")
|
97 |
+
|
98 |
+
dataframe = pd.concat([old_dataframe,new_dataframe])
|
99 |
+
|
100 |
+
return dataframe,dataframe.empty
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
|
108 |
+
if not is_empty:
|
109 |
+
markdown = """
|
110 |
+
<div class='infoPoint'>
|
111 |
+
<h1> {name_leaderboard} </h1>
|
112 |
+
<br>
|
113 |
+
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p>
|
114 |
+
<br>
|
115 |
+
<p> We use lower bound result to sort the models: mean_reward - std_reward. </p>
|
116 |
+
<br>
|
117 |
+
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
|
118 |
+
<br>
|
119 |
+
<p> You want to try your model? Read this <a href="https://github.com/huggingface/deep-rl-class/blob/Unit1/unit1/README.md" target="_blank">Unit 1</a> of Deep Reinforcement Learning Class.
|
120 |
+
</p>
|
121 |
+
</div>
|
122 |
+
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))
|
123 |
+
|
124 |
+
else:
|
125 |
+
markdown = """
|
126 |
+
<div class='infoPoint'>
|
127 |
+
<h1> {name_leaderboard} </h1>
|
128 |
+
<br>
|
129 |
+
</div>
|
130 |
+
""".format(name_leaderboard = name_leaderboard)
|
131 |
+
return markdown
|
132 |
+
|
133 |
+
def reload_all_data():
|
134 |
+
|
135 |
+
global RL_DETAILS,RL_ENVS
|
136 |
+
|
137 |
+
for rl_env in RL_ENVS:
|
138 |
+
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)
|
139 |
+
|
140 |
+
html = """<div style="color: green">
|
141 |
+
<p> β
Leaderboard updated! Click `Show Statistics` to see the current statistics.</p>
|
142 |
+
</div>
|
143 |
+
"""
|
144 |
+
return html
|
145 |
+
|
146 |
+
|
147 |
+
def reload_leaderboard(rl_env):
|
148 |
+
global RL_DETAILS
|
149 |
+
|
150 |
+
data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
151 |
+
|
152 |
+
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
153 |
+
|
154 |
+
return markdown
|
155 |
+
|
156 |
+
def get_units_stat():
|
157 |
+
# gets the number of models per unit
|
158 |
+
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
|
159 |
+
for rl_env in RL_ENVS:
|
160 |
+
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
|
161 |
+
if is_empty is False:
|
162 |
+
# All good! Carry on
|
163 |
+
metadata_list = rl_env_metadata['metadata'].values
|
164 |
+
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
|
165 |
+
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
|
166 |
+
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'SpaceInvadersNoFrameskip-v4'.lower() in [tag.lower for tag in m['tags']]])
|
167 |
+
|
168 |
+
# get count
|
169 |
+
for k in units.keys():
|
170 |
+
units[k] = len(units[k])
|
171 |
+
|
172 |
+
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
def get_models_stat():
|
177 |
+
# gets the number of models per unit
|
178 |
+
units={}
|
179 |
+
for rl_env in RL_ENVS:
|
180 |
+
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
|
181 |
+
if is_empty is False:
|
182 |
+
# All good! Carry on
|
183 |
+
metadata_list = rl_env_metadata['metadata'].values
|
184 |
+
units[rl_env] = [m for m in metadata_list]
|
185 |
+
|
186 |
+
# get count
|
187 |
+
for k in units.keys():
|
188 |
+
units[k] = len(units[k])
|
189 |
+
|
190 |
+
return plot_bar(value = list(units.values),name = list(units.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")
|
191 |
+
|
192 |
+
def get_user_stat():
|
193 |
+
# gets the number of models per unit
|
194 |
+
users={}
|
195 |
+
for rl_env in RL_ENVS:
|
196 |
+
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
|
197 |
+
if is_empty is False:
|
198 |
+
# All good! Carry on
|
199 |
+
metadata_list = rl_env_metadata['metadata'].values
|
200 |
+
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]
|
201 |
+
|
202 |
+
# get count
|
203 |
+
for k in users.keys():
|
204 |
+
users[k] = len(set(users[k]))
|
205 |
+
|
206 |
+
return plot_bar(value = list(users.values),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of user submissions",title="Number of user submissions per RL environment")
|
207 |
+
|
208 |
+
def get_stat():
|
209 |
+
# gets the number of models per unit
|
210 |
+
units={'Unit 1':[],'Unit 2':[],'Unit 3':[]}
|
211 |
+
users={}
|
212 |
+
models={}
|
213 |
+
for rl_env in RL_ENVS:
|
214 |
+
rl_env_metadata,is_empty = RL_DETAILS[rl_env]['data']
|
215 |
+
if is_empty is False:
|
216 |
+
# All good! Carry on
|
217 |
+
metadata_list = rl_env_metadata['metadata'].values
|
218 |
+
units['Unit 1'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags']])
|
219 |
+
units['Unit 2'].extend([m for m in metadata_list if 'custom-implementation' in m['tags']])
|
220 |
+
units['Unit 3'].extend([m for m in metadata_list if 'stable-baselines3' in m['tags'] and 'spaceinvadersNoFrameskip-v4'.lower() in [tag.lower() for tag in m['tags']]])
|
221 |
+
|
222 |
+
users[rl_env] = [m['model_id'].split('/')[0] for m in metadata_list]
|
223 |
+
models[rl_env] = [m for m in metadata_list]
|
224 |
+
|
225 |
+
# get count
|
226 |
+
for k in units.keys():
|
227 |
+
units[k] = len(units[k])
|
228 |
+
for k in users.keys():
|
229 |
+
users[k] = len(set(users[k]))
|
230 |
+
for k in models.keys():
|
231 |
+
models[k] = len(models[k])
|
232 |
+
|
233 |
+
units_plot = plot_bar(value = list(units.values()),name = list(units.keys()),x_name = "Units",y_name = "Number of model submissions",title="Number of model submissions per unit")
|
234 |
+
user_plot = plot_barh(value = list(users.values()),name = list(users.keys()),x_name = "RL Environment",y_name = "Number of unique user submissions",title="Number of unique user submissions per RL environment")
|
235 |
+
model_plot = plot_barh(value = list(models.values()),name = list(models.keys()),x_name = "RL Environment",y_name = "Number of model submissions",title="Number of model submissions per RL environment")
|
236 |
+
return units_plot,user_plot,model_plot
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
block = gr.Blocks(css=BLOCK_CSS)
|
243 |
+
with block:
|
244 |
+
notification = gr.HTML("""<div style="color: green">
|
245 |
+
<p> β Updating leaderboard... </p>
|
246 |
+
</div>
|
247 |
+
""")
|
248 |
+
block.load(reload_all_data,[],[notification])
|
249 |
+
|
250 |
+
with gr.Tabs():
|
251 |
+
with gr.TabItem("Dashboard") as rl_tab:
|
252 |
+
# Stats of user submission per units
|
253 |
+
# 2. # model submissions per environment
|
254 |
+
# 3. # unique users per environment
|
255 |
+
# get_units_stat()
|
256 |
+
#data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
|
257 |
+
#markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
|
258 |
+
#env_state =gr.Variable(default_value=rl_env)
|
259 |
+
#output_markdown = gr.HTML(markdown)
|
260 |
+
reload = gr.Button('Show Statistics')
|
261 |
+
|
262 |
+
units_plot = gr.Plot(type="matplotlib")
|
263 |
+
model_plot = gr.Plot(type="matplotlib")
|
264 |
+
user_plot = gr.Plot(type="matplotlib")
|
265 |
+
#plot_gender = gr.Plot(type="matplotlib")
|
266 |
+
|
267 |
+
#output_html = gr.HTML(data_html)
|
268 |
+
|
269 |
+
reload.click(get_stat,[],[units_plot,user_plot,model_plot])
|
270 |
+
#rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
|
271 |
+
|
272 |
+
block.launch()
|
utils.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import requests
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from huggingface_hub import HfApi, hf_hub_download
|
5 |
+
from huggingface_hub.repocard import metadata_load
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
|
9 |
+
def plot_bar(value,name,x_name,y_name,title):
|
10 |
+
fig, ax = plt.subplots(figsize=(10,4),tight_layout=True)
|
11 |
+
|
12 |
+
ax.set(xlabel=x_name, ylabel=y_name,title=title)
|
13 |
+
|
14 |
+
ax.bar(name, value)
|
15 |
+
|
16 |
+
|
17 |
+
return ax.figure
|
18 |
+
def plot_barh(value,name,x_name,y_name,title):
|
19 |
+
fig, ax = plt.subplots(figsize=(10,4),tight_layout=True)
|
20 |
+
|
21 |
+
ax.set(xlabel=x_name, ylabel=y_name,title=title)
|
22 |
+
|
23 |
+
ax.barh(name, value)
|
24 |
+
|
25 |
+
|
26 |
+
return ax.figure
|
27 |
+
# Based on Omar Sanseviero work
|
28 |
+
# Make model clickable link
|
29 |
+
def make_clickable_model(model_name):
|
30 |
+
# remove user from model name
|
31 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
32 |
+
|
33 |
+
link = "https://huggingface.co/" + model_name
|
34 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
35 |
+
|
36 |
+
# Make user clickable link
|
37 |
+
def make_clickable_user(user_id):
|
38 |
+
link = "https://huggingface.co/" + user_id
|
39 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
def get_model_ids(rl_env):
|
44 |
+
api = HfApi()
|
45 |
+
models = api.list_models(filter=rl_env)
|
46 |
+
model_ids = [x.modelId for x in models]
|
47 |
+
return model_ids
|
48 |
+
|
49 |
+
def get_metadata(model_id):
|
50 |
+
try:
|
51 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
52 |
+
metadata = metadata_load(readme_path)
|
53 |
+
metadata['model_id'] = model_id
|
54 |
+
return metadata
|
55 |
+
except requests.exceptions.HTTPError:
|
56 |
+
# 404 README.md not found
|
57 |
+
return None
|
58 |
+
|
59 |
+
def parse_metrics_accuracy(meta):
|
60 |
+
if "model-index" not in meta:
|
61 |
+
return None
|
62 |
+
result = meta["model-index"][0]["results"]
|
63 |
+
metrics = result[0]["metrics"]
|
64 |
+
accuracy = metrics[0]["value"]
|
65 |
+
return accuracy
|
66 |
+
|
67 |
+
# We keep the worst case episode
|
68 |
+
def parse_rewards(accuracy):
|
69 |
+
default_std = -1000
|
70 |
+
default_reward=-1000
|
71 |
+
if accuracy != None:
|
72 |
+
parsed = accuracy.split(' +/- ')
|
73 |
+
if len(parsed)>1:
|
74 |
+
mean_reward = float(parsed[0])
|
75 |
+
std_reward = float(parsed[1])
|
76 |
+
else:
|
77 |
+
mean_reward = float(default_std)
|
78 |
+
std_reward = float(default_reward)
|
79 |
+
|
80 |
+
else:
|
81 |
+
mean_reward = float(default_std)
|
82 |
+
std_reward = float(default_reward)
|
83 |
+
return mean_reward, std_reward
|
84 |
+
|