Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import cv2 | |
import onnxruntime | |
from typing import Optional, Tuple | |
from ..utils.transforms import ResizeLongestSide | |
class SamPredictorONNX: | |
mask_threshold: float = 0.0 | |
image_format: str = "RGB" | |
img_size = 1024 | |
pixel_mean = np.array([123.675, 116.28, 103.53])[None, :, None, None] | |
pixel_std = np.array([58.395, 57.12, 57.375])[None, :, None, None] | |
def __init__( | |
self, | |
encoder_path: str, | |
decoder_path: str | |
) -> None: | |
super().__init__() | |
self.encoder = onnxruntime.InferenceSession(encoder_path) | |
self.decoder = onnxruntime.InferenceSession(decoder_path) | |
# Set the execution provider to GPU if available | |
if 'CUDAExecutionProvider' in onnxruntime.get_available_providers(): | |
self.encoder.set_providers(['CUDAExecutionProvider']) | |
self.decoder.set_providers(['CUDAExecutionProvider']) | |
self.transform = ResizeLongestSide(self.img_size) | |
self.reset_image() | |
def set_image( | |
self, | |
image: np.ndarray, | |
image_format: str = "RGB", | |
) -> None: | |
assert image_format in [ | |
"RGB", | |
"BGR", | |
], f"image_format must be in ['RGB', 'BGR'], is {image_format}." | |
if image_format != self.image_format: | |
image = image[..., ::-1] | |
# Transform the image to the form expected by the model | |
input_image = self.transform.apply_image(image) | |
input_image = input_image.transpose(2, 0, 1)[None, :, :, :] | |
self.reset_image() | |
original_size = image.shape[:2] | |
input_size = tuple(input_image.shape[-2:]) | |
input_image = self.preprocess(input_image).astype(np.float32) | |
outputs = self.encoder.run(None, {'image': input_image}) | |
features = outputs[0] | |
return features, input_size, original_size | |
def predict( | |
self, | |
features: np.ndarray, | |
input_size: Tuple[int, int], | |
original_size: Tuple[int, int], | |
point_coords: Optional[np.ndarray] = None, | |
point_labels: Optional[np.ndarray] = None, | |
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
point_coords = self.transform.apply_coords(point_coords, original_size) | |
outputs = self.decoder.run(None, { | |
'image_embeddings': features, | |
'point_coords': point_coords.astype(np.float32), | |
'point_labels': point_labels.astype(np.float32) | |
}) | |
scores, low_res_masks = outputs[0], outputs[1] | |
masks = self.postprocess_masks(low_res_masks, input_size, original_size) | |
masks = masks > self.mask_threshold | |
return masks, scores, low_res_masks | |
def reset_image(self) -> None: | |
"""Resets the currently set image.""" | |
self.is_image_set = False | |
self.features = None | |
self.orig_h = None | |
self.orig_w = None | |
self.input_h = None | |
self.input_w = None | |
def preprocess(self, x: np.ndarray): | |
x = (x - self.pixel_mean) / self.pixel_std | |
h, w = x.shape[-2:] | |
padh = self.img_size - h | |
padw = self.img_size - w | |
x = np.pad(x, ((0, 0), (0, 0), (0, padh), (0, padw)), mode='constant', constant_values=0) | |
return x | |
def postprocess_masks(self, mask: np.ndarray, input_size: Tuple[int, int], original_size: Tuple[int, int]) -> np.ndarray: | |
mask = mask.squeeze(0).transpose(1, 2, 0) | |
mask = cv2.resize(mask, (self.img_size, self.img_size), interpolation=cv2.INTER_LINEAR) | |
mask = mask[:input_size[0], :input_size[1], :] | |
mask = cv2.resize(mask, (original_size[1], original_size[0]), interpolation=cv2.INTER_LINEAR) | |
mask = mask.transpose(2, 0, 1)[None, :, :, :] | |
return mask | |