Spaces:
No application file
No application file
import os | |
os.chdir('/root/autodl-tmp/t2m/T2M-GPT-main') | |
import torch | |
import numpy as np | |
from torch.utils.tensorboard import SummaryWriter | |
from os.path import join as pjoin | |
from torch.distributions import Categorical | |
import json | |
import clip | |
from attack import PGDAttacker | |
import options.option_transformer as option_trans | |
import models.vqvae as vqvae | |
import utils.utils_model as utils_model | |
import eval_trans_per as eval_trans | |
from dataset import dataset_TM_train | |
from dataset import dataset_TM_eval | |
from dataset import dataset_tokenize | |
from metrics import batch_tvd,topk_overlap_loss,topK_overlap_true_loss | |
import models.t2m_trans as trans | |
from options.get_eval_option import get_opt | |
from models.evaluator_wrapper import EvaluatorModelWrapper | |
import warnings | |
from utils.word_vectorizer import WordVectorizer | |
from utils.losses import loss_robust | |
import wandb | |
warnings.filterwarnings('ignore') | |
##### ---- Exp dirs ---- ##### | |
args = option_trans.get_args_parser() | |
torch.manual_seed(args.seed) | |
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') | |
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}') | |
os.makedirs(args.out_dir, exist_ok = True) | |
os.makedirs(args.vq_dir, exist_ok = True) | |
##### ---- Logger ---- ##### | |
logger = utils_model.get_logger(args.out_dir) | |
writer = SummaryWriter(args.out_dir) | |
logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) | |
##### ---- Dataloader ---- ##### | |
w_vectorizer = WordVectorizer('./glove', 'our_vab') | |
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
test_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer) | |
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) | |
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) | |
##### ---- Network ---- ##### | |
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False) # Must set jit=False for training | |
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16 | |
clip_model.eval() | |
for p in clip_model.parameters(): | |
p.requires_grad = False | |
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers | |
args.nb_code, | |
args.code_dim, | |
args.output_emb_width, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate) | |
trans_encoder =trans.Text2Motion_Transformer(num_vq=args.nb_code, | |
embed_dim=args.embed_dim_gpt, | |
clip_dim=args.clip_dim, | |
block_size=args.block_size, | |
num_layers=args.num_layers, | |
n_head=args.n_head_gpt, | |
drop_out_rate=args.drop_out_rate, | |
fc_rate=args.ff_rate) | |
print ('loading checkpoint from {}'.format(args.resume_pth)) | |
ckpt = torch.load(args.resume_pth, map_location='cpu') | |
net.load_state_dict(ckpt['net'], strict=True) | |
net.eval() | |
net.cuda() | |
if args.resume_trans is not None: | |
print ('loading transformer checkpoint from {}'.format(args.resume_trans)) | |
ckpt = torch.load(args.resume_trans, map_location='cpu') | |
trans_encoder.load_state_dict(ckpt['trans'], strict=True) | |
trans_encoder.eval() | |
trans_encoder.cuda() | |
print('loading chechpoint successfully!') | |
best_fid=1000.0, | |
best_fid_per=1000.0 | |
best_iter=0.0, | |
best_div=100.0 | |
best_top1=0.0 | |
best_top2=0.0 | |
best_top3=0.0 | |
best_matching=100.0 | |
best_fid, best_fid_per,best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid,best_fid_per, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper) | |