File size: 6,595 Bytes
15fa80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import json

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter

import models.vqvae as vqvae
import utils.losses as losses 
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
from multiprocessing import freeze_support
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):

    current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
    for param_group in optimizer.param_groups:
        param_group["lr"] = current_lr

    return optimizer, current_lr

##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)

args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)

##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))



w_vectorizer = WordVectorizer('./glove', 'our_vab')
# w_vectorizer = WordVectorizer('D:\project\\faithfulpose\T2M-GPT-main\glove', 'our_vab')


if args.dataname == 'kit' : 
    dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
    # dataset_opt_path = 'D:\project\\faithfulpose\T2M-GPT-main\checkpoints\kit\Comp_v6_KLD005\opt.txt' 
    args.nb_joints = 21
    
else :
    dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
    args.nb_joints = 22

logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')

wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)


##### ---- Dataloader ---- #####
train_loader = dataset_VQ.DATALoader(args.dataname,
                                        args.batch_size,
                                        window_size=args.window_size,
                                        unit_length=2**args.down_t)

train_loader_iter = dataset_VQ.cycle(train_loader)

val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
                                        32,
                                        w_vectorizer,
                                        unit_length=2**args.down_t)

##### ---- Network ---- #####
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
                       args.nb_code,
                       args.code_dim,
                       args.output_emb_width,
                       args.down_t,
                       args.stride_t,
                       args.width,
                       args.depth,
                       args.dilation_growth_rate,
                       args.vq_act,
                       args.vq_norm)


if args.resume_pth : 
    logger.info('loading checkpoint from {}'.format(args.resume_pth))
    ckpt = torch.load(args.resume_pth, map_location='cpu')
    net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()

##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
  

Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)

##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.


for nb_iter in range(1, args.warm_up_iter):
    
    optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
    
    gt_motion = next(train_loader_iter)
    gt_motion = gt_motion.cuda().float() # (bs, 64, dim)

    pred_motion, loss_commit, perplexity = net(gt_motion)
    loss_motion = Loss(pred_motion, gt_motion)
    loss_vel = Loss.forward_vel(pred_motion, gt_motion)
    
    loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    avg_recons += loss_motion.item()
    avg_perplexity += perplexity.item()
    avg_commit += loss_commit.item()
    
    if nb_iter % args.print_iter ==  0 :
        avg_recons /= args.print_iter
        avg_perplexity /= args.print_iter
        avg_commit /= args.print_iter
        
        logger.info(f"Warmup. Iter {nb_iter} :  lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}")
        
        avg_recons, avg_perplexity, avg_commit = 0., 0., 0.

    # ##### ---- Training ---- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)

for nb_iter in range(1, args.total_iter + 1):

    gt_motion = next(train_loader_iter)
    gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
    
    pred_motion, loss_commit, perplexity = net(gt_motion)
    loss_motion = Loss(pred_motion, gt_motion)
    loss_vel = Loss.forward_vel(pred_motion, gt_motion)
    
    loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    scheduler.step()
    
    avg_recons += loss_motion.item()
    avg_perplexity += perplexity.item()
    avg_commit += loss_commit.item()
    
    if nb_iter % args.print_iter ==  0 :
        avg_recons /= args.print_iter
        avg_perplexity /= args.print_iter
        avg_commit /= args.print_iter
        
        writer.add_scalar('./Train/L1', avg_recons, nb_iter)
        writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
        writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
        
        logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}")
        
        avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,

    if nb_iter % args.eval_iter==0 :
        best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)