import streamlit as st
from PIL import Image
import os
import pandas as pd
import tomli
pd.options.mode.chained_assignment = None
st.set_page_config(layout="wide")
st.markdown(
"
Our History in Data
",
unsafe_allow_html=True,
)
@st.cache_data
def load_data():
df_ind = pd.read_csv("data/df_individuals_score.csv", index_col=[0])
df_ind["productive_year"] = df_ind["productive_year"].astype(int)
df_ind["individual_wikidata_id"] = "https://www.wikidata.org/wiki/" + df_ind[
"individual_wikidata_id"
].astype(str)
df_ind = df_ind[df_ind["productive_year"] <= 1800]
return df_ind
df_ind = load_data()
def load_region_descriptions():
with open("regions.toml", "rb") as toml_file:
data = tomli.load(toml_file)
return data
# Function to get description based on selected region
def get_region_description(region_data, selected_region):
return region_data[selected_region]["description"]
region_data = load_region_descriptions()
# page = st.sidebar.selectbox("Navigate to:", ["Home", "Methodology", "Team"])
page = st.sidebar.radio(
"Menu",
["Home", "Methodology", "Team", "About"],
key="navigation_radio",
)
st.sidebar.success(
"This project is led by Charles de Dampierre, Folgert Karsdorp, Mike Kestemont, Valentin Thouzeau and Nicolas Baumard"
)
# Test change
if page == "Home":
# Set the global index path
global_index_path = "data/immaterial_index/figures_trends_R/results"
global_index_path_per_capita = (
"data/immaterial_index/figures_trends_R/results_capita"
)
unseen_index_path = "data/immaterial_index/figures_trends_R/results_unseen"
unseen_capita_index_path = (
"data/immaterial_index/figures_trends_R/results_unseen_capita"
)
complexity_index_path = "data/immaterial_index/figures_trends_R/results_complexity"
occupations_index_path = (
"data/immaterial_index/figures_trends_R/results_occupations"
)
population_path = "data/population"
gdp_per_capita_path = "data/gdp_per_capita"
maps_path = "data/map_figures"
from region_list import region_list
region_filtered = list(region_list.keys())
index_paths = {}
for region_key in region_list:
# Create the index paths for the current region
index_paths[region_key] = {
"map": f"{maps_path}/map_{region_key}.png",
"global_index": f"{global_index_path}/{region_key}.png",
"global_index_per_capita": f"{global_index_path_per_capita}/{region_key}.png",
"unseen_index": f"{unseen_index_path}/{region_key}.png",
"unseen_index_capita": f"{unseen_capita_index_path}/{region_key}.png",
"complexity_index": f"{complexity_index_path}/{region_key}.png",
"occupations_index": f"{occupations_index_path}/{region_key}.png",
"gdp_per_capita_index": f"{gdp_per_capita_path}/{region_key}.png",
"population_index": f"{population_path}/{region_key}.png",
}
# Get the region names (keys) from the index_paths dictionary
regions = list(index_paths.keys())
# Allow the user to select a region
selected_region = st.sidebar.selectbox(
"Region:", regions, index=regions.index("Japan")
)
# Display the selected region's images vertically
if selected_region in index_paths:
st.markdown(
f"{selected_region}
",
unsafe_allow_html=True,
)
try:
st.image(
f"image/{selected_region}.jpeg",
caption="Japan",
use_column_width=False,
width=1000,
)
except:
pass
col1, col2, col3 = st.columns([8, 1, 8])
# Display the data in the left column
with col1:
for key, path in index_paths[selected_region].items():
if os.path.exists(path):
if key == "global_index":
st.subheader("Cultural Index")
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
elif key == "global_index_per_capita":
st.subheader("Cultural Index per capita")
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
elif key == "unseen_index":
st.subheader(
"Cultural Index corrected by the unseen-species model"
)
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
elif key == "unseen_index_capita":
st.subheader(
"Cultural Index per capita corrected by the unseen-species model"
)
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
# elif key == "complexity_index":
# st.subheader("Complexity Index")
# st.image(
# Image.open(path),
# caption=key.capitalize(),
# use_column_width=True,
# )
elif key == "occupations_index":
st.subheader("Occupation Index")
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
elif key == "gdp_per_capita_index":
st.subheader("GDP per capita")
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
else:
st.write(f"File for {key.capitalize()} does not exist.")
with col3:
try:
st.image(
Image.open(f"data/map_figures/map_{selected_region}.png"),
use_column_width=True,
width=1000,
)
except:
pass
st.subheader("Analysis")
try:
region_description = get_region_description(
region_data, selected_region
)
st.write(f"{region_description}")
except:
st.write("Analysis not ready yet")
st.subheader("Cultural Producers in Wikidata")
df = df_ind[df_ind["region_name"] == selected_region]
df = df.drop(["region_name", "decade"], axis=1)
df = df[
[
"individual_name",
"productive_year",
"score",
"individual_wikidata_id" "",
]
]
df = df.sort_values("score", ascending=False)
df = df.rename(columns={"score": "Number of Catalogs"})
min_date = region_list[selected_region]["time_range"][0]
max_date = region_list[selected_region]["time_range"][1]
df = df[df["productive_year"] >= min_date]
df = df[df["productive_year"] <= max_date]
# df["productive_year"] = df["productive_year"] * 1000
df["productive_year"] = round(df["productive_year"], 0).astype(str)
# df["productive_year"] = round(df["productive_year"], 0).astype(int)
df = df.reset_index(drop=True)
st.dataframe(df)
st.write(f"Number of Cultural producers active before 1800: {len(df)}")
try:
st.subheader("Population")
st.image(
Image.open(path),
caption=key.capitalize(),
use_column_width=True,
)
except:
pass
elif page == "Methodology":
# Read the content of the file methodolog.md
with open("docs/methodology.md", "r") as file:
methodology_content = file.read()
# Display the content in the Streamlit app
st.write(methodology_content)