Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
""" | |
This script runs a Gradio App for the Open-Sora model. | |
Usage: | |
python demo.py <config-path> | |
""" | |
import argparse | |
import importlib | |
import os | |
import subprocess | |
import sys | |
import re | |
import json | |
import math | |
import spaces | |
import torch | |
import gradio as gr | |
MODEL_TYPES = ["v1.1"] | |
CONFIG_MAP = { | |
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py", | |
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py", | |
} | |
HF_STDIT_MAP = { | |
"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2", | |
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3", | |
} | |
RESOLUTION_MAP = { | |
"144p": (256, 144), | |
"240p": (426, 240), | |
"360p": (480, 360), | |
"480p": (858, 480), | |
"720p": (1280, 720), | |
"1080p": (1920, 1080) | |
} | |
# ============================ | |
# Utils | |
# ============================ | |
def collect_references_batch(reference_paths, vae, image_size): | |
from opensora.datasets.utils import read_from_path | |
refs_x = [] | |
for reference_path in reference_paths: | |
if reference_path is None: | |
refs_x.append([]) | |
continue | |
ref_path = reference_path.split(";") | |
ref = [] | |
for r_path in ref_path: | |
r = read_from_path(r_path, image_size, transform_name="resize_crop") | |
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype)) | |
r_x = r_x.squeeze(0) | |
ref.append(r_x) | |
refs_x.append(ref) | |
# refs_x: [batch, ref_num, C, T, H, W] | |
return refs_x | |
def process_mask_strategy(mask_strategy): | |
mask_batch = [] | |
mask_strategy = mask_strategy.split(";") | |
for mask in mask_strategy: | |
mask_group = mask.split(",") | |
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}" | |
if len(mask_group) == 1: | |
mask_group.extend(["0", "0", "0", "1", "0"]) | |
elif len(mask_group) == 2: | |
mask_group.extend(["0", "0", "1", "0"]) | |
elif len(mask_group) == 3: | |
mask_group.extend(["0", "1", "0"]) | |
elif len(mask_group) == 4: | |
mask_group.extend(["1", "0"]) | |
elif len(mask_group) == 5: | |
mask_group.append("0") | |
mask_batch.append(mask_group) | |
return mask_batch | |
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i): | |
masks = [] | |
for i, mask_strategy in enumerate(mask_strategys): | |
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device) | |
if mask_strategy is None: | |
masks.append(mask) | |
continue | |
mask_strategy = process_mask_strategy(mask_strategy) | |
for mst in mask_strategy: | |
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst | |
loop_id = int(loop_id) | |
if loop_id != loop_i: | |
continue | |
m_id = int(m_id) | |
m_ref_start = int(m_ref_start) | |
m_length = int(m_length) | |
m_target_start = int(m_target_start) | |
edit_ratio = float(edit_ratio) | |
ref = refs_x[i][m_id] # [C, T, H, W] | |
if m_ref_start < 0: | |
m_ref_start = ref.shape[1] + m_ref_start | |
if m_target_start < 0: | |
# z: [B, C, T, H, W] | |
m_target_start = z.shape[2] + m_target_start | |
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length] | |
mask[m_target_start : m_target_start + m_length] = edit_ratio | |
masks.append(mask) | |
masks = torch.stack(masks) | |
return masks | |
def process_prompts(prompts, num_loop): | |
from opensora.models.text_encoder.t5 import text_preprocessing | |
ret_prompts = [] | |
for prompt in prompts: | |
if prompt.startswith("|0|"): | |
prompt_list = prompt.split("|")[1:] | |
text_list = [] | |
for i in range(0, len(prompt_list), 2): | |
start_loop = int(prompt_list[i]) | |
text = prompt_list[i + 1] | |
text = text_preprocessing(text) | |
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop | |
text_list.extend([text] * (end_loop - start_loop)) | |
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}" | |
ret_prompts.append(text_list) | |
else: | |
prompt = text_preprocessing(prompt) | |
ret_prompts.append([prompt] * num_loop) | |
return ret_prompts | |
def extract_json_from_prompts(prompts): | |
additional_infos = [] | |
ret_prompts = [] | |
for prompt in prompts: | |
parts = re.split(r"(?=[{\[])", prompt) | |
assert len(parts) <= 2, f"Invalid prompt: {prompt}" | |
ret_prompts.append(parts[0]) | |
if len(parts) == 1: | |
additional_infos.append({}) | |
else: | |
additional_infos.append(json.loads(parts[1])) | |
return ret_prompts, additional_infos | |
# ============================ | |
# Runtime Environment | |
# ============================ | |
def install_dependencies(enable_optimization=False): | |
""" | |
Install the required dependencies for the demo if they are not already installed. | |
""" | |
def _is_package_available(name) -> bool: | |
try: | |
importlib.import_module(name) | |
return True | |
except (ImportError, ModuleNotFoundError): | |
return False | |
# flash attention is needed no matter optimization is enabled or not | |
# because Hugging Face transformers detects flash_attn is a dependency in STDiT | |
# thus, we need to install it no matter what | |
if not _is_package_available("flash_attn"): | |
subprocess.run( | |
f"{sys.executable} -m pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
if enable_optimization: | |
# install apex for fused layernorm | |
if not _is_package_available("apex"): | |
subprocess.run( | |
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git', | |
shell=True, | |
) | |
# install ninja | |
if not _is_package_available("ninja"): | |
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True) | |
# install xformers | |
if not _is_package_available("xformers"): | |
subprocess.run( | |
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers", | |
shell=True, | |
) | |
# ============================ | |
# Model-related | |
# ============================ | |
def read_config(config_path): | |
""" | |
Read the configuration file. | |
""" | |
from mmengine.config import Config | |
return Config.fromfile(config_path) | |
def build_models(model_type, config, enable_optimization=False): | |
""" | |
Build the models for the given model type and configuration. | |
""" | |
# build vae | |
from opensora.registry import MODELS, build_module | |
vae = build_module(config.vae, MODELS).cuda() | |
# build text encoder | |
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32 | |
text_encoder.t5.model = text_encoder.t5.model.cuda() | |
# build stdit | |
# we load model from HuggingFace directly so that we don't need to | |
# handle model download logic in HuggingFace Space | |
from transformers import AutoModel | |
stdit = AutoModel.from_pretrained( | |
HF_STDIT_MAP[model_type], | |
enable_flash_attn=enable_optimization, | |
trust_remote_code=True, | |
).cuda() | |
# build scheduler | |
from opensora.registry import SCHEDULERS | |
scheduler = build_module(config.scheduler, SCHEDULERS) | |
# hack for classifier-free guidance | |
text_encoder.y_embedder = stdit.y_embedder | |
# move modelst to device | |
vae = vae.to(torch.bfloat16).eval() | |
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32 | |
stdit = stdit.to(torch.bfloat16).eval() | |
# clear cuda | |
torch.cuda.empty_cache() | |
return vae, text_encoder, stdit, scheduler | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model-type", | |
default="v1.1-stage3", | |
choices=MODEL_TYPES, | |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}", | |
) | |
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder") | |
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.") | |
parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.") | |
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.") | |
parser.add_argument( | |
"--enable-optimization", | |
action="store_true", | |
help="Whether to enable optimization such as flash attention and fused layernorm", | |
) | |
return parser.parse_args() | |
# ============================ | |
# Main Gradio Script | |
# ============================ | |
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text | |
# so we can't pass the models to `run_inference` as arguments. | |
# instead, we need to define them globally so that we can access these models inside `run_inference` | |
# read config | |
args = parse_args() | |
config = read_config(CONFIG_MAP[args.model_type]) | |
# make outputs dir | |
os.makedirs(args.output, exist_ok=True) | |
# disable torch jit as it can cause failure in gradio SDK | |
# gradio sdk uses torch with cuda 11.3 | |
torch.jit._state.disable() | |
# set up | |
install_dependencies(enable_optimization=args.enable_optimization) | |
# import after installation | |
from opensora.datasets import IMG_FPS, save_sample | |
from opensora.utils.misc import to_torch_dtype | |
# some global variables | |
dtype = to_torch_dtype(config.dtype) | |
device = torch.device("cuda") | |
# build model | |
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization) | |
def run_inference(mode, prompt_text, resolution, length, reference_image): | |
with torch.inference_mode(): | |
# ====================== | |
# 1. Preparation | |
# ====================== | |
# parse the inputs | |
resolution = RESOLUTION_MAP[resolution] | |
# compute number of loops | |
num_seconds = int(length.rstrip('s')) | |
total_number_of_frames = num_seconds * config.fps / config.frame_interval | |
num_loop = math.ceil(total_number_of_frames / config.num_frames) | |
# prepare model args | |
model_args = dict() | |
height = torch.tensor([resolution[0]], device=device, dtype=dtype) | |
width = torch.tensor([resolution[1]], device=device, dtype=dtype) | |
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype) | |
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype) | |
if config.num_frames == 1: | |
config.fps = IMG_FPS | |
fps = torch.tensor([config.fps], device=device, dtype=dtype) | |
model_args["height"] = height | |
model_args["width"] = width | |
model_args["num_frames"] = num_frames | |
model_args["ar"] = ar | |
model_args["fps"] = fps | |
# compute latent size | |
input_size = (config.num_frames, *resolution) | |
latent_size = vae.get_latent_size(input_size) | |
# process prompt | |
prompt_raw = [prompt_text] | |
prompt_raw, _ = extract_json_from_prompts(prompt_raw) | |
prompt_loops = process_prompts(prompt_raw, num_loop) | |
video_clips = [] | |
# prepare mask strategy | |
if mode == "Text2Video": | |
mask_strategy = [None] | |
elif mode == "Image2Video": | |
mask_strategy = ['0'] | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
# ========================= | |
# 2. Load reference images | |
# ========================= | |
if mode == "Text2Video": | |
refs_x = collect_references_batch([None], vae, resolution) | |
elif mode == "Image2Video": | |
# save image to disk | |
from PIL import Image | |
im = Image.fromarray(reference_image) | |
im.save("test.jpg") | |
refs_x = collect_references_batch(["test.jpg"], vae, resolution) | |
else: | |
raise ValueError(f"Invalid mode: {mode}") | |
# 4.3. long video generation | |
for loop_i in range(num_loop): | |
# 4.4 sample in hidden space | |
batch_prompts = [prompt[loop_i] for prompt in prompt_loops] | |
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype) | |
# 4.5. apply mask strategy | |
masks = None | |
# if cfg.reference_path is not None: | |
if loop_i > 0: | |
ref_x = vae.encode(video_clips[-1]) | |
for j, refs in enumerate(refs_x): | |
if refs is None: | |
refs_x[j] = [ref_x[j]] | |
else: | |
refs.append(ref_x[j]) | |
if mask_strategy[j] is None: | |
mask_strategy[j] = "" | |
else: | |
mask_strategy[j] += ";" | |
mask_strategy[ | |
j | |
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}" | |
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i) | |
# 4.6. diffusion sampling | |
samples = scheduler.sample( | |
stdit, | |
text_encoder, | |
z=z, | |
prompts=batch_prompts, | |
device=device, | |
additional_args=model_args, | |
mask=masks, # scheduler must support mask | |
) | |
samples = vae.decode(samples.to(dtype)) | |
video_clips.append(samples) | |
# 4.7. save video | |
if loop_i == num_loop - 1: | |
video_clips_list = [ | |
video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :] | |
for i in range(1, num_loop) | |
] | |
video = torch.cat(video_clips_list, dim=1) | |
save_path = f"{args.output}/sample" | |
saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True) | |
return saved_path | |
def main(): | |
# create demo | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<div style='text-align: center;'> | |
<p align="center"> | |
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/> | |
</p> | |
<div style="display: flex; gap: 10px; justify-content: center;"> | |
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a> | |
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a> | |
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a> | |
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a> | |
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a> | |
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a> | |
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a> | |
</div> | |
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
mode = gr.Radio( | |
choices=["Text2Video", "Image2Video"], | |
value="Text2Video", | |
label="Usage", | |
info="Choose your usage scenario", | |
) | |
prompt_text = gr.Textbox( | |
label="Prompt", | |
placeholder="Describe your video here", | |
lines=4, | |
) | |
resolution = gr.Radio( | |
choices=["144p", "240p", "360p", "480p", "720p", "1080p"], | |
value="144p", | |
label="Resolution", | |
) | |
length = gr.Radio( | |
choices=["2s", "4s", "8s"], | |
value="2s", | |
label="Video Length", | |
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time." | |
) | |
reference_image = gr.Image( | |
label="Reference Image (only used for Image2Video)", | |
) | |
with gr.Column(): | |
output_video = gr.Video( | |
label="Output Video", | |
height="100%" | |
) | |
with gr.Row(): | |
submit_button = gr.Button("Generate video") | |
submit_button.click( | |
fn=run_inference, | |
inputs=[mode, prompt_text, resolution, length, reference_image], | |
outputs=output_video | |
) | |
# launch | |
args.port = int(os.environ.get('PORT', 7860)) # default port is 7860 if PORT env var is not set | |
demo.launch(server_port=args.port, server_name=args.host, share=args.share) | |
if __name__ == "__main__": | |
main() | |