|
import gradio_client |
|
from gradio_client import Client, file |
|
from urllib.parse import quote |
|
|
|
|
|
import numpy as np |
|
import gradio as gr |
|
def generate_img(prompt): |
|
client = Client("ameerazam08/SDXS-GPU-Demo") |
|
client.view_api() |
|
result = client.predict( |
|
prompt=prompt, |
|
api_name="/generate_image" |
|
) |
|
return result |
|
|
|
def pollinations_url_seedless(a, width=512, height=512): |
|
urlprompt=quote(str(a)) |
|
url=f"https://image.pollinations.ai/prompt/{urlprompt}?width={width}&height={height}" |
|
return url |
|
|
|
def interrogate(img): |
|
from gradio_client import Client |
|
|
|
|
|
client = Client("https://pharmapsychotic-clip-interrogator.hf.space/") |
|
client.view_api() |
|
result = client.predict( |
|
img, |
|
"ViT-L (best for Stable Diffusion 1.*)", |
|
"best", |
|
fn_index=3 |
|
) |
|
return result |
|
def rountrip(img): |
|
prompt=interrogate(img) |
|
print(prompt) |
|
url=pollinations_url_seedless(prompt) |
|
return generate_img(prompt),prompt |
|
|
|
demo = gr.Interface(rountrip, gr.Image(type= 'filepath'),[gr.Image(type= 'filepath'),"textbox"]) |
|
demo.launch() |
|
|