cdcvd commited on
Commit
91b4d2a
1 Parent(s): 293e140

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import openai
3
+ import fitz # PyMuPDF
4
+ import torch
5
+ from transformers import pipeline
6
+
7
+ # Set OpenAI and Hugging Face API keys
8
+ openai.api_key = "your_openai_api_key"
9
+
10
+ # Initialize the Gemma model
11
+ gemma_pipe = pipeline(
12
+ "text-generation",
13
+ model="google/gemma-2-27b-it",
14
+ model_kwargs={"torch_dtype": torch.bfloat16},
15
+ device="cuda"
16
+ )
17
+
18
+ def extract_text_from_pdf(pdf_file):
19
+ document = fitz.open(pdf_file)
20
+ text = ""
21
+ for page_num in range(len(document)):
22
+ page = document.load_page(page_num)
23
+ text += page.get_text()
24
+ return text
25
+
26
+ def evaluate_with_gpt(pdf_file, job_description):
27
+ resume_text = extract_text_from_pdf(pdf_file)
28
+
29
+ prompt = f"""به عنوان یک تحلیلگر با تجربه سیستم ردیابی متقاضی (ATS)، نقش شما شامل ارزیابی رزومه در برابر شرح شغل است.
30
+ رزومه:{resume_text}
31
+ شرح شغل:{job_description}
32
+ """
33
+
34
+ response = openai.ChatCompletion.create(
35
+ model="gpt-4o",
36
+ messages=[
37
+ {"role": "system", "content": "You are a helpful assistant."},
38
+ {"role": "user", "content": prompt}
39
+ ]
40
+ )
41
+
42
+ return response.choices[0].message['content']
43
+
44
+ def evaluate_with_gemma(pdf_file, job_description):
45
+ resume_text = extract_text_from_pdf(pdf_file)
46
+
47
+ prompt = f"Evaluate the following resume against the job description. Resume: {resume_text} Job Description: {job_description}"
48
+
49
+ outputs = gemma_pipe(prompt, max_new_tokens=256)
50
+ return outputs[0]["generated_text"].strip()
51
+
52
+ def evaluate_both_models(pdf_file, job_description):
53
+ gpt_result = evaluate_with_gpt(pdf_file, job_description)
54
+ gemma_result = evaluate_with_gemma(pdf_file, job_description)
55
+ return f"GPT-4o Result:\n{gpt_result}\n\nGemma Result:\n{gemma_result}"
56
+
57
+ iface = gr.Interface(
58
+ fn=lambda pdf, jd, model: evaluate_with_gpt(pdf, jd) if model == "GPT-4o" else evaluate_with_gemma(pdf, jd) if model == "Gemma" else evaluate_both_models(pdf, jd),
59
+ inputs=[
60
+ gr.File(label="Upload Resume PDF"),
61
+ gr.Textbox(lines=10, label="Job Description"),
62
+ gr.Radio(choices=["GPT-4o", "Gemma", "Both"], label="Choose Model")
63
+ ],
64
+ outputs="text",
65
+ title="Resume Evaluator"
66
+ )
67
+
68
+ iface.launch()