|
import ast |
|
import glob |
|
import inspect |
|
import os |
|
import pathlib |
|
import pickle |
|
import shutil |
|
import subprocess |
|
import tempfile |
|
import time |
|
import traceback |
|
import types |
|
import uuid |
|
import zipfile |
|
from collections import defaultdict |
|
from datetime import datetime |
|
from functools import reduce |
|
from operator import concat |
|
import filelock |
|
|
|
from joblib import delayed |
|
from langchain.callbacks import streaming_stdout |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain.schema import LLMResult |
|
from tqdm import tqdm |
|
|
|
from enums import DocumentSubset, no_lora_str, model_token_mapping, source_prefix, source_postfix, non_query_commands, \ |
|
LangChainAction, LangChainMode, DocumentChoice |
|
from evaluate_params import gen_hyper |
|
from gen import get_model, SEED |
|
from prompter import non_hf_types, PromptType, Prompter |
|
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \ |
|
get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer, \ |
|
have_libreoffice, have_arxiv, have_playwright, have_selenium, have_tesseract, have_pymupdf, set_openai |
|
from utils_langchain import StreamingGradioCallbackHandler |
|
|
|
import_matplotlib() |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
from langchain.chains.qa_with_sources import load_qa_with_sources_chain |
|
|
|
|
|
|
|
|
|
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \ |
|
UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \ |
|
EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \ |
|
UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader, \ |
|
UnstructuredExcelLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.docstore.document import Document |
|
from langchain import PromptTemplate, HuggingFaceTextGenInference |
|
from langchain.vectorstores import Chroma |
|
|
|
|
|
def get_db(sources, use_openai_embedding=False, db_type='faiss', |
|
persist_directory="db_dir", load_db_if_exists=True, |
|
langchain_mode='notset', |
|
collection_name=None, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"): |
|
if not sources: |
|
return None |
|
|
|
|
|
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model) |
|
assert collection_name is not None or langchain_mode != 'notset' |
|
if collection_name is None: |
|
collection_name = langchain_mode.replace(' ', '_') |
|
|
|
|
|
if db_type == 'faiss': |
|
from langchain.vectorstores import FAISS |
|
db = FAISS.from_documents(sources, embedding) |
|
elif db_type == 'weaviate': |
|
import weaviate |
|
from weaviate.embedded import EmbeddedOptions |
|
from langchain.vectorstores import Weaviate |
|
|
|
if os.getenv('WEAVIATE_URL', None): |
|
client = _create_local_weaviate_client() |
|
else: |
|
client = weaviate.Client( |
|
embedded_options=EmbeddedOptions() |
|
) |
|
index_name = collection_name.capitalize() |
|
db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False, |
|
index_name=index_name) |
|
elif db_type == 'chroma': |
|
assert persist_directory is not None |
|
os.makedirs(persist_directory, exist_ok=True) |
|
|
|
|
|
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, |
|
hf_embedding_model, verbose=False) |
|
if db is None: |
|
from chromadb.config import Settings |
|
client_settings = Settings(anonymized_telemetry=False, |
|
chroma_db_impl="duckdb+parquet", |
|
persist_directory=persist_directory) |
|
db = Chroma.from_documents(documents=sources, |
|
embedding=embedding, |
|
persist_directory=persist_directory, |
|
collection_name=collection_name, |
|
client_settings=client_settings) |
|
db.persist() |
|
clear_embedding(db) |
|
save_embed(db, use_openai_embedding, hf_embedding_model) |
|
else: |
|
|
|
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type, |
|
use_openai_embedding=use_openai_embedding, |
|
hf_embedding_model=hf_embedding_model) |
|
else: |
|
raise RuntimeError("No such db_type=%s" % db_type) |
|
|
|
return db |
|
|
|
|
|
def _get_unique_sources_in_weaviate(db): |
|
batch_size = 100 |
|
id_source_list = [] |
|
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size) |
|
|
|
while result['objects']: |
|
id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']] |
|
last_id = id_source_list[-1][0] |
|
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id) |
|
|
|
unique_sources = {source for _, source in id_source_list} |
|
return unique_sources |
|
|
|
|
|
def add_to_db(db, sources, db_type='faiss', |
|
avoid_dup_by_file=False, |
|
avoid_dup_by_content=True, |
|
use_openai_embedding=False, |
|
hf_embedding_model=None): |
|
assert hf_embedding_model is not None |
|
num_new_sources = len(sources) |
|
if not sources: |
|
return db, num_new_sources, [] |
|
if db_type == 'faiss': |
|
db.add_documents(sources) |
|
elif db_type == 'weaviate': |
|
|
|
if avoid_dup_by_file or avoid_dup_by_content: |
|
unique_sources = _get_unique_sources_in_weaviate(db) |
|
sources = [x for x in sources if x.metadata['source'] not in unique_sources] |
|
num_new_sources = len(sources) |
|
if num_new_sources == 0: |
|
return db, num_new_sources, [] |
|
db.add_documents(documents=sources) |
|
elif db_type == 'chroma': |
|
collection = get_documents(db) |
|
|
|
metadata_files = set([x['source'] for x in collection['metadatas']]) |
|
if avoid_dup_by_file: |
|
|
|
raise RuntimeError("Not desired code path") |
|
sources = [x for x in sources if x.metadata['source'] not in metadata_files] |
|
if avoid_dup_by_content: |
|
|
|
|
|
|
|
metadata_hash_ids = set( |
|
[x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]]) |
|
|
|
sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids] |
|
num_nohash = len([x for x in sources if not x.metadata.get('hashid')]) |
|
print("Found %s new sources (%d have no hash in original source," |
|
" so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True) |
|
|
|
dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files]) |
|
print("Removing %s duplicate files from db because ingesting those as new documents" % len( |
|
dup_metadata_files), flush=True) |
|
client_collection = db._client.get_collection(name=db._collection.name, |
|
embedding_function=db._collection._embedding_function) |
|
for dup_file in dup_metadata_files: |
|
dup_file_meta = dict(source=dup_file) |
|
try: |
|
client_collection.delete(where=dup_file_meta) |
|
except KeyError: |
|
pass |
|
num_new_sources = len(sources) |
|
if num_new_sources == 0: |
|
return db, num_new_sources, [] |
|
db.add_documents(documents=sources) |
|
db.persist() |
|
clear_embedding(db) |
|
save_embed(db, use_openai_embedding, hf_embedding_model) |
|
else: |
|
raise RuntimeError("No such db_type=%s" % db_type) |
|
|
|
new_sources_metadata = [x.metadata for x in sources] |
|
|
|
return db, num_new_sources, new_sources_metadata |
|
|
|
|
|
def create_or_update_db(db_type, persist_directory, collection_name, |
|
sources, use_openai_embedding, add_if_exists, verbose, hf_embedding_model): |
|
if db_type == 'weaviate': |
|
import weaviate |
|
from weaviate.embedded import EmbeddedOptions |
|
|
|
if os.getenv('WEAVIATE_URL', None): |
|
client = _create_local_weaviate_client() |
|
else: |
|
client = weaviate.Client( |
|
embedded_options=EmbeddedOptions() |
|
) |
|
|
|
index_name = collection_name.replace(' ', '_').capitalize() |
|
if client.schema.exists(index_name) and not add_if_exists: |
|
client.schema.delete_class(index_name) |
|
if verbose: |
|
print("Removing %s" % index_name, flush=True) |
|
elif db_type == 'chroma': |
|
if not os.path.isdir(persist_directory) or not add_if_exists: |
|
if os.path.isdir(persist_directory): |
|
if verbose: |
|
print("Removing %s" % persist_directory, flush=True) |
|
remove(persist_directory) |
|
if verbose: |
|
print("Generating db", flush=True) |
|
|
|
if not add_if_exists: |
|
if verbose: |
|
print("Generating db", flush=True) |
|
else: |
|
if verbose: |
|
print("Loading and updating db", flush=True) |
|
|
|
db = get_db(sources, |
|
use_openai_embedding=use_openai_embedding, |
|
db_type=db_type, |
|
persist_directory=persist_directory, |
|
langchain_mode=collection_name, |
|
hf_embedding_model=hf_embedding_model) |
|
|
|
return db |
|
|
|
|
|
def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"): |
|
|
|
if use_openai_embedding: |
|
assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY" |
|
from langchain.embeddings import OpenAIEmbeddings |
|
embedding = OpenAIEmbeddings(disallowed_special=()) |
|
else: |
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
|
|
device, torch_dtype, context_class = get_device_dtype() |
|
model_kwargs = dict(device=device) |
|
if 'instructor' in hf_embedding_model: |
|
encode_kwargs = {'normalize_embeddings': True} |
|
embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model, |
|
model_kwargs=model_kwargs, |
|
encode_kwargs=encode_kwargs) |
|
else: |
|
embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs) |
|
return embedding |
|
|
|
|
|
def get_answer_from_sources(chain, sources, question): |
|
return chain( |
|
{ |
|
"input_documents": sources, |
|
"question": question, |
|
}, |
|
return_only_outputs=True, |
|
)["output_text"] |
|
|
|
|
|
"""Wrapper around Huggingface text generation inference API.""" |
|
from functools import partial |
|
from typing import Any, Dict, List, Optional, Set |
|
|
|
from pydantic import Extra, Field, root_validator |
|
|
|
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks |
|
from langchain.llms.base import LLM |
|
|
|
|
|
class GradioInference(LLM): |
|
""" |
|
Gradio generation inference API. |
|
""" |
|
inference_server_url: str = "" |
|
|
|
temperature: float = 0.8 |
|
top_p: Optional[float] = 0.95 |
|
top_k: Optional[int] = None |
|
num_beams: Optional[int] = 1 |
|
max_new_tokens: int = 512 |
|
min_new_tokens: int = 1 |
|
early_stopping: bool = False |
|
max_time: int = 180 |
|
repetition_penalty: Optional[float] = None |
|
num_return_sequences: Optional[int] = 1 |
|
do_sample: bool = False |
|
chat_client: bool = False |
|
|
|
return_full_text: bool = True |
|
stream: bool = False |
|
sanitize_bot_response: bool = False |
|
|
|
prompter: Any = None |
|
context: Any = '' |
|
iinput: Any = '' |
|
client: Any = None |
|
|
|
class Config: |
|
"""Configuration for this pydantic object.""" |
|
|
|
extra = Extra.forbid |
|
|
|
@root_validator() |
|
def validate_environment(cls, values: Dict) -> Dict: |
|
"""Validate that python package exists in environment.""" |
|
|
|
try: |
|
if values['client'] is None: |
|
import gradio_client |
|
values["client"] = gradio_client.Client( |
|
values["inference_server_url"] |
|
) |
|
except ImportError: |
|
raise ImportError( |
|
"Could not import gradio_client python package. " |
|
"Please install it with `pip install gradio_client`." |
|
) |
|
return values |
|
|
|
@property |
|
def _llm_type(self) -> str: |
|
"""Return type of llm.""" |
|
return "gradio_inference" |
|
|
|
def _call( |
|
self, |
|
prompt: str, |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[CallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> str: |
|
|
|
|
|
|
|
|
|
stream_output = self.stream |
|
gr_client = self.client |
|
client_langchain_mode = 'Disabled' |
|
client_add_chat_history_to_context = True |
|
client_langchain_action = LangChainAction.QUERY.value |
|
client_langchain_agents = [] |
|
top_k_docs = 1 |
|
chunk = True |
|
chunk_size = 512 |
|
client_kwargs = dict(instruction=prompt if self.chat_client else '', |
|
iinput=self.iinput if self.chat_client else '', |
|
context=self.context, |
|
|
|
|
|
stream_output=stream_output, |
|
prompt_type=self.prompter.prompt_type, |
|
prompt_dict='', |
|
|
|
temperature=self.temperature, |
|
top_p=self.top_p, |
|
top_k=self.top_k, |
|
num_beams=self.num_beams, |
|
max_new_tokens=self.max_new_tokens, |
|
min_new_tokens=self.min_new_tokens, |
|
early_stopping=self.early_stopping, |
|
max_time=self.max_time, |
|
repetition_penalty=self.repetition_penalty, |
|
num_return_sequences=self.num_return_sequences, |
|
do_sample=self.do_sample, |
|
chat=self.chat_client, |
|
|
|
instruction_nochat=prompt if not self.chat_client else '', |
|
iinput_nochat=self.iinput if not self.chat_client else '', |
|
langchain_mode=client_langchain_mode, |
|
add_chat_history_to_context=client_add_chat_history_to_context, |
|
langchain_action=client_langchain_action, |
|
langchain_agents=client_langchain_agents, |
|
top_k_docs=top_k_docs, |
|
chunk=chunk, |
|
chunk_size=chunk_size, |
|
document_subset=DocumentSubset.Relevant.name, |
|
document_choice=[DocumentChoice.ALL.value], |
|
) |
|
api_name = '/submit_nochat_api' |
|
if not stream_output: |
|
res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name) |
|
res_dict = ast.literal_eval(res) |
|
text = res_dict['response'] |
|
return self.prompter.get_response(prompt + text, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
else: |
|
text_callback = None |
|
if run_manager: |
|
text_callback = partial( |
|
run_manager.on_llm_new_token, verbose=self.verbose |
|
) |
|
|
|
job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name) |
|
text0 = '' |
|
while not job.done(): |
|
outputs_list = job.communicator.job.outputs |
|
if outputs_list: |
|
res = job.communicator.job.outputs[-1] |
|
res_dict = ast.literal_eval(res) |
|
text = res_dict['response'] |
|
text = self.prompter.get_response(prompt + text, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
|
|
text_chunk = text[len(text0):] |
|
|
|
text0 = text |
|
|
|
if text_callback: |
|
text_callback(text_chunk) |
|
|
|
time.sleep(0.01) |
|
|
|
|
|
res_all = job.outputs() |
|
if len(res_all) > 0: |
|
res = res_all[-1] |
|
res_dict = ast.literal_eval(res) |
|
text = res_dict['response'] |
|
|
|
else: |
|
|
|
text = text0 |
|
text_chunk = text[len(text0):] |
|
if text_callback: |
|
text_callback(text_chunk) |
|
return self.prompter.get_response(prompt + text, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
|
|
|
|
class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference): |
|
max_new_tokens: int = 512 |
|
do_sample: bool = False |
|
top_k: Optional[int] = None |
|
top_p: Optional[float] = 0.95 |
|
typical_p: Optional[float] = 0.95 |
|
temperature: float = 0.8 |
|
repetition_penalty: Optional[float] = None |
|
return_full_text: bool = False |
|
stop_sequences: List[str] = Field(default_factory=list) |
|
seed: Optional[int] = None |
|
inference_server_url: str = "" |
|
timeout: int = 300 |
|
headers: dict = None |
|
stream: bool = False |
|
sanitize_bot_response: bool = False |
|
prompter: Any = None |
|
context: Any = '' |
|
iinput: Any = '' |
|
tokenizer: Any = None |
|
client: Any = None |
|
|
|
@root_validator() |
|
def validate_environment(cls, values: Dict) -> Dict: |
|
"""Validate that python package exists in environment.""" |
|
|
|
try: |
|
if values['client'] is None: |
|
import text_generation |
|
|
|
values["client"] = text_generation.Client( |
|
values["inference_server_url"], |
|
timeout=values["timeout"], |
|
headers=values["headers"], |
|
) |
|
except ImportError: |
|
raise ImportError( |
|
"Could not import text_generation python package. " |
|
"Please install it with `pip install text_generation`." |
|
) |
|
return values |
|
|
|
def _call( |
|
self, |
|
prompt: str, |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[CallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> str: |
|
if stop is None: |
|
stop = self.stop_sequences |
|
else: |
|
stop += self.stop_sequences |
|
|
|
|
|
assert self.tokenizer is not None |
|
from h2oai_pipeline import H2OTextGenerationPipeline |
|
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer) |
|
|
|
|
|
data_point = dict(context=self.context, instruction=prompt, input=self.iinput) |
|
prompt = self.prompter.generate_prompt(data_point) |
|
|
|
gen_server_kwargs = dict(do_sample=self.do_sample, |
|
stop_sequences=stop, |
|
max_new_tokens=self.max_new_tokens, |
|
top_k=self.top_k, |
|
top_p=self.top_p, |
|
typical_p=self.typical_p, |
|
temperature=self.temperature, |
|
repetition_penalty=self.repetition_penalty, |
|
return_full_text=self.return_full_text, |
|
seed=self.seed, |
|
) |
|
gen_server_kwargs.update(kwargs) |
|
|
|
|
|
self.client.timeout = max(300, self.timeout) |
|
|
|
if not self.stream: |
|
res = self.client.generate( |
|
prompt, |
|
**gen_server_kwargs, |
|
) |
|
if self.return_full_text: |
|
gen_text = res.generated_text[len(prompt):] |
|
else: |
|
gen_text = res.generated_text |
|
|
|
for stop_seq in stop: |
|
if stop_seq in gen_text: |
|
gen_text = gen_text[:gen_text.index(stop_seq)] |
|
text = prompt + gen_text |
|
text = self.prompter.get_response(text, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
else: |
|
text_callback = None |
|
if run_manager: |
|
text_callback = partial( |
|
run_manager.on_llm_new_token, verbose=self.verbose |
|
) |
|
|
|
if text_callback: |
|
text_callback(prompt) |
|
text = "" |
|
|
|
for response in self.client.generate_stream(prompt, **gen_server_kwargs): |
|
text_chunk = response.token.text |
|
text += text_chunk |
|
text = self.prompter.get_response(prompt + text, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
|
|
is_stop = False |
|
for stop_seq in stop: |
|
if stop_seq in response.token.text: |
|
is_stop = True |
|
break |
|
if is_stop: |
|
break |
|
if not response.token.special: |
|
if text_callback: |
|
text_callback(response.token.text) |
|
return text |
|
|
|
|
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.llms import OpenAI |
|
from langchain.llms.openai import _streaming_response_template, completion_with_retry, _update_response, \ |
|
update_token_usage |
|
|
|
|
|
class H2OOpenAI(OpenAI): |
|
""" |
|
New class to handle vLLM's use of OpenAI, no vllm_chat supported, so only need here |
|
Handles prompting that OpenAI doesn't need, stopping as well |
|
""" |
|
stop_sequences: Any = None |
|
sanitize_bot_response: bool = False |
|
prompter: Any = None |
|
context: Any = '' |
|
iinput: Any = '' |
|
tokenizer: Any = None |
|
|
|
@classmethod |
|
def all_required_field_names(cls) -> Set: |
|
all_required_field_names = super(OpenAI, cls).all_required_field_names() |
|
all_required_field_names.update( |
|
{'top_p', 'frequency_penalty', 'presence_penalty', 'stop_sequences', 'sanitize_bot_response', 'prompter', |
|
'tokenizer'}) |
|
return all_required_field_names |
|
|
|
def _generate( |
|
self, |
|
prompts: List[str], |
|
stop: Optional[List[str]] = None, |
|
run_manager: Optional[CallbackManagerForLLMRun] = None, |
|
**kwargs: Any, |
|
) -> LLMResult: |
|
stop = self.stop_sequences if not stop else self.stop_sequences + stop |
|
|
|
|
|
assert self.tokenizer is not None |
|
from h2oai_pipeline import H2OTextGenerationPipeline |
|
for prompti, prompt in enumerate(prompts): |
|
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer) |
|
|
|
data_point = dict(context=self.context, instruction=prompt, input=self.iinput) |
|
prompt = self.prompter.generate_prompt(data_point) |
|
prompts[prompti] = prompt |
|
|
|
params = self._invocation_params |
|
params = {**params, **kwargs} |
|
sub_prompts = self.get_sub_prompts(params, prompts, stop) |
|
choices = [] |
|
token_usage: Dict[str, int] = {} |
|
|
|
|
|
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"} |
|
text = '' |
|
for _prompts in sub_prompts: |
|
if self.streaming: |
|
text_with_prompt = "" |
|
prompt = _prompts[0] |
|
if len(_prompts) > 1: |
|
raise ValueError("Cannot stream results with multiple prompts.") |
|
params["stream"] = True |
|
response = _streaming_response_template() |
|
first = True |
|
for stream_resp in completion_with_retry( |
|
self, prompt=_prompts, **params |
|
): |
|
if first: |
|
stream_resp["choices"][0]["text"] = prompt + stream_resp["choices"][0]["text"] |
|
first = False |
|
text_chunk = stream_resp["choices"][0]["text"] |
|
text_with_prompt += text_chunk |
|
text = self.prompter.get_response(text_with_prompt, prompt=prompt, |
|
sanitize_bot_response=self.sanitize_bot_response) |
|
if run_manager: |
|
run_manager.on_llm_new_token( |
|
text_chunk, |
|
verbose=self.verbose, |
|
logprobs=stream_resp["choices"][0]["logprobs"], |
|
) |
|
_update_response(response, stream_resp) |
|
choices.extend(response["choices"]) |
|
else: |
|
response = completion_with_retry(self, prompt=_prompts, **params) |
|
choices.extend(response["choices"]) |
|
if not self.streaming: |
|
|
|
update_token_usage(_keys, response, token_usage) |
|
choices[0]['text'] = text |
|
return self.create_llm_result(choices, prompts, token_usage) |
|
|
|
|
|
class H2OChatOpenAI(ChatOpenAI): |
|
@classmethod |
|
def all_required_field_names(cls) -> Set: |
|
all_required_field_names = super(ChatOpenAI, cls).all_required_field_names() |
|
all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty'}) |
|
return all_required_field_names |
|
|
|
|
|
def get_llm(use_openai_model=False, |
|
model_name=None, |
|
model=None, |
|
tokenizer=None, |
|
inference_server=None, |
|
stream_output=False, |
|
do_sample=False, |
|
temperature=0.1, |
|
top_k=40, |
|
top_p=0.7, |
|
num_beams=1, |
|
max_new_tokens=256, |
|
min_new_tokens=1, |
|
early_stopping=False, |
|
max_time=180, |
|
repetition_penalty=1.0, |
|
num_return_sequences=1, |
|
prompt_type=None, |
|
prompt_dict=None, |
|
prompter=None, |
|
context=None, |
|
iinput=None, |
|
sanitize_bot_response=False, |
|
verbose=False, |
|
): |
|
if inference_server is None: |
|
inference_server = '' |
|
if use_openai_model or inference_server.startswith('openai') or inference_server.startswith('vllm'): |
|
if use_openai_model and model_name is None: |
|
model_name = "gpt-3.5-turbo" |
|
|
|
openai, inf_type = set_openai(inference_server) |
|
kwargs_extra = {} |
|
if inference_server == 'openai_chat' or inf_type == 'vllm_chat': |
|
cls = H2OChatOpenAI |
|
|
|
else: |
|
cls = H2OOpenAI |
|
if inf_type == 'vllm': |
|
terminate_response = prompter.terminate_response or [] |
|
stop_sequences = list(set(terminate_response + [prompter.PreResponse])) |
|
stop_sequences = [x for x in stop_sequences if x] |
|
kwargs_extra = dict(stop_sequences=stop_sequences, |
|
sanitize_bot_response=sanitize_bot_response, |
|
prompter=prompter, |
|
context=context, |
|
iinput=iinput, |
|
tokenizer=tokenizer, |
|
client=None) |
|
|
|
callbacks = [StreamingGradioCallbackHandler()] |
|
llm = cls(model_name=model_name, |
|
temperature=temperature if do_sample else 0, |
|
|
|
max_tokens=max_new_tokens, |
|
top_p=top_p if do_sample else 1, |
|
frequency_penalty=0, |
|
presence_penalty=1.07 - repetition_penalty + 0.6, |
|
callbacks=callbacks if stream_output else None, |
|
openai_api_key=openai.api_key, |
|
openai_api_base=openai.api_base, |
|
logit_bias=None if inf_type == 'vllm' else {}, |
|
max_retries=2, |
|
streaming=stream_output, |
|
**kwargs_extra |
|
) |
|
streamer = callbacks[0] if stream_output else None |
|
if inference_server in ['openai', 'openai_chat']: |
|
prompt_type = inference_server |
|
else: |
|
|
|
prompt_type = prompt_type or 'plain' |
|
elif inference_server: |
|
assert inference_server.startswith( |
|
'http'), "Malformed inference_server=%s. Did you add http:// in front?" % inference_server |
|
|
|
from gradio_utils.grclient import GradioClient |
|
from text_generation import Client as HFClient |
|
if isinstance(model, GradioClient): |
|
gr_client = model |
|
hf_client = None |
|
else: |
|
gr_client = None |
|
hf_client = model |
|
assert isinstance(hf_client, HFClient) |
|
|
|
inference_server, headers = get_hf_server(inference_server) |
|
|
|
|
|
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10'))) |
|
|
|
callbacks = [StreamingGradioCallbackHandler()] |
|
assert prompter is not None |
|
terminate_response = prompter.terminate_response or [] |
|
stop_sequences = list(set(terminate_response + [prompter.PreResponse])) |
|
stop_sequences = [x for x in stop_sequences if x] |
|
|
|
if gr_client: |
|
chat_client = False |
|
llm = GradioInference( |
|
inference_server_url=inference_server, |
|
return_full_text=True, |
|
|
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=min_new_tokens, |
|
early_stopping=early_stopping, |
|
max_time=max_time, |
|
repetition_penalty=repetition_penalty, |
|
num_return_sequences=num_return_sequences, |
|
do_sample=do_sample, |
|
chat_client=chat_client, |
|
|
|
callbacks=callbacks if stream_output else None, |
|
stream=stream_output, |
|
prompter=prompter, |
|
context=context, |
|
iinput=iinput, |
|
client=gr_client, |
|
sanitize_bot_response=sanitize_bot_response, |
|
) |
|
elif hf_client: |
|
llm = H2OHuggingFaceTextGenInference( |
|
inference_server_url=inference_server, |
|
do_sample=do_sample, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
return_full_text=True, |
|
seed=SEED, |
|
|
|
stop_sequences=stop_sequences, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
|
|
callbacks=callbacks if stream_output else None, |
|
stream=stream_output, |
|
prompter=prompter, |
|
context=context, |
|
iinput=iinput, |
|
tokenizer=tokenizer, |
|
client=hf_client, |
|
timeout=max_time, |
|
sanitize_bot_response=sanitize_bot_response, |
|
) |
|
else: |
|
raise RuntimeError("No defined client") |
|
streamer = callbacks[0] if stream_output else None |
|
elif model_name in non_hf_types: |
|
if model_name == 'llama': |
|
callbacks = [StreamingGradioCallbackHandler()] |
|
streamer = callbacks[0] if stream_output else None |
|
else: |
|
|
|
|
|
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()] |
|
streamer = None |
|
if prompter: |
|
prompt_type = prompter.prompt_type |
|
else: |
|
prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output) |
|
pass |
|
from gpt4all_llm import get_llm_gpt4all |
|
llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
top_k=top_k, |
|
top_p=top_p, |
|
callbacks=callbacks, |
|
verbose=verbose, |
|
streaming=stream_output, |
|
prompter=prompter, |
|
context=context, |
|
iinput=iinput, |
|
) |
|
else: |
|
if model is None: |
|
|
|
assert tokenizer is None |
|
prompt_type = 'human_bot' |
|
if model_name is None: |
|
model_name = 'h2oai/h2ogpt-oasst1-512-12b' |
|
|
|
|
|
inference_server = '' |
|
model, tokenizer, device = get_model(load_8bit=True, base_model=model_name, |
|
inference_server=inference_server, gpu_id=0) |
|
|
|
max_max_tokens = tokenizer.model_max_length |
|
gen_kwargs = dict(do_sample=do_sample, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
num_beams=num_beams, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=min_new_tokens, |
|
early_stopping=early_stopping, |
|
max_time=max_time, |
|
repetition_penalty=repetition_penalty, |
|
num_return_sequences=num_return_sequences, |
|
return_full_text=True, |
|
handle_long_generation=None) |
|
assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0 |
|
|
|
if stream_output: |
|
skip_prompt = False |
|
from gen import H2OTextIteratorStreamer |
|
decoder_kwargs = {} |
|
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs) |
|
gen_kwargs.update(dict(streamer=streamer)) |
|
else: |
|
streamer = None |
|
|
|
from h2oai_pipeline import H2OTextGenerationPipeline |
|
pipe = H2OTextGenerationPipeline(model=model, use_prompter=True, |
|
prompter=prompter, |
|
context=context, |
|
iinput=iinput, |
|
prompt_type=prompt_type, |
|
prompt_dict=prompt_dict, |
|
sanitize_bot_response=sanitize_bot_response, |
|
chat=False, stream_output=stream_output, |
|
tokenizer=tokenizer, |
|
|
|
max_input_tokens=max_max_tokens - max(min_new_tokens, 256), |
|
**gen_kwargs) |
|
|
|
|
|
|
|
pipe.task = "text2text-generation" |
|
|
|
from langchain.llms import HuggingFacePipeline |
|
llm = HuggingFacePipeline(pipeline=pipe) |
|
return llm, model_name, streamer, prompt_type |
|
|
|
|
|
def get_device_dtype(): |
|
|
|
import torch |
|
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 |
|
device = 'cpu' if n_gpus == 0 else 'cuda' |
|
|
|
|
|
context_class = torch.device |
|
torch_dtype = torch.float16 if device == 'cuda' else torch.float32 |
|
return device, torch_dtype, context_class |
|
|
|
|
|
def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True): |
|
""" |
|
Get wikipedia data from online |
|
:param title: |
|
:param first_paragraph_only: |
|
:param text_limit: |
|
:param take_head: |
|
:return: |
|
""" |
|
filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head) |
|
url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}" |
|
if first_paragraph_only: |
|
url += "&exintro=1" |
|
import json |
|
if not os.path.isfile(filename): |
|
data = requests.get(url).json() |
|
json.dump(data, open(filename, 'wt')) |
|
else: |
|
data = json.load(open(filename, "rt")) |
|
page_content = list(data["query"]["pages"].values())[0]["extract"] |
|
if take_head is not None and text_limit is not None: |
|
page_content = page_content[:text_limit] if take_head else page_content[-text_limit:] |
|
title_url = str(title).replace(' ', '_') |
|
return Document( |
|
page_content=page_content, |
|
metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"}, |
|
) |
|
|
|
|
|
def get_wiki_sources(first_para=True, text_limit=None): |
|
""" |
|
Get specific named sources from wikipedia |
|
:param first_para: |
|
:param text_limit: |
|
:return: |
|
""" |
|
default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux'] |
|
wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources)) |
|
return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources] |
|
|
|
|
|
def get_github_docs(repo_owner, repo_name): |
|
""" |
|
Access github from specific repo |
|
:param repo_owner: |
|
:param repo_name: |
|
:return: |
|
""" |
|
with tempfile.TemporaryDirectory() as d: |
|
subprocess.check_call( |
|
f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .", |
|
cwd=d, |
|
shell=True, |
|
) |
|
git_sha = ( |
|
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) |
|
.decode("utf-8") |
|
.strip() |
|
) |
|
repo_path = pathlib.Path(d) |
|
markdown_files = list(repo_path.glob("*/*.md")) + list( |
|
repo_path.glob("*/*.mdx") |
|
) |
|
for markdown_file in markdown_files: |
|
with open(markdown_file, "r") as f: |
|
relative_path = markdown_file.relative_to(repo_path) |
|
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" |
|
yield Document(page_content=f.read(), metadata={"source": github_url}) |
|
|
|
|
|
def get_dai_pickle(dest="."): |
|
from huggingface_hub import hf_hub_download |
|
|
|
token = os.getenv('HUGGINGFACE_API_TOKEN', True) |
|
path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset') |
|
shutil.copy(path_to_zip_file, dest) |
|
|
|
|
|
def get_dai_docs(from_hf=False, get_pickle=True): |
|
""" |
|
Consume DAI documentation, or consume from public pickle |
|
:param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain |
|
:param get_pickle: Avoid raw DAI docs, just get pickle directly from HF |
|
:return: |
|
""" |
|
import pickle |
|
|
|
if get_pickle: |
|
get_dai_pickle() |
|
|
|
dai_store = 'dai_docs.pickle' |
|
dst = "working_dir_docs" |
|
if not os.path.isfile(dai_store): |
|
from create_data import setup_dai_docs |
|
dst = setup_dai_docs(dst=dst, from_hf=from_hf) |
|
|
|
import glob |
|
files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True)) |
|
|
|
basedir = os.path.abspath(os.getcwd()) |
|
from create_data import rst_to_outputs |
|
new_outputs = rst_to_outputs(files) |
|
os.chdir(basedir) |
|
|
|
pickle.dump(new_outputs, open(dai_store, 'wb')) |
|
else: |
|
new_outputs = pickle.load(open(dai_store, 'rb')) |
|
|
|
sources = [] |
|
for line, file in new_outputs: |
|
|
|
sym_src = os.path.abspath(os.path.join(dst, file)) |
|
sym_dst = os.path.abspath(os.path.join(os.getcwd(), file)) |
|
if os.path.lexists(sym_dst): |
|
os.remove(sym_dst) |
|
os.symlink(sym_src, sym_dst) |
|
itm = Document(page_content=line, metadata={"source": file}) |
|
|
|
|
|
sources.append(itm) |
|
return sources |
|
|
|
|
|
image_types = ["png", "jpg", "jpeg"] |
|
non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf", |
|
"md", |
|
"html", "mhtml", |
|
"enex", "eml", "epub", "odt", "pptx", "ppt", |
|
"zip", "urls", |
|
|
|
] |
|
|
|
|
|
if have_libreoffice or True: |
|
|
|
non_image_types.extend(["docx", "doc", "xls", "xlsx"]) |
|
|
|
file_types = non_image_types + image_types |
|
|
|
|
|
def add_meta(docs1, file): |
|
file_extension = pathlib.Path(file).suffix |
|
hashid = hash_file(file) |
|
doc_hash = str(uuid.uuid4())[:10] |
|
if not isinstance(docs1, (list, tuple, types.GeneratorType)): |
|
docs1 = [docs1] |
|
[x.metadata.update(dict(input_type=file_extension, date=str(datetime.now()), hashid=hashid, doc_hash=doc_hash)) for |
|
x in docs1] |
|
|
|
|
|
def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False, |
|
chunk=True, chunk_size=512, n_jobs=-1, |
|
is_url=False, is_txt=False, |
|
enable_captions=True, |
|
captions_model=None, |
|
enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None, |
|
headsize=50): |
|
if file is None: |
|
if fail_any_exception: |
|
raise RuntimeError("Unexpected None file") |
|
else: |
|
return [] |
|
doc1 = [] |
|
if base_path is None and not is_txt and not is_url: |
|
|
|
|
|
dir_name = os.path.dirname(file) |
|
base_name = os.path.basename(file) |
|
|
|
base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10] |
|
base_path = os.path.join(dir_name, base_name) |
|
if is_url: |
|
file = file.strip() |
|
if file.lower().startswith('arxiv:'): |
|
query = file.lower().split('arxiv:') |
|
if len(query) == 2 and have_arxiv: |
|
query = query[1] |
|
docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load() |
|
|
|
[[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1] |
|
query_url = f"https://arxiv.org/abs/{query}" |
|
[x.metadata.update( |
|
dict(source=x.metadata.get('entry_id', query_url), query=query_url, |
|
input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in |
|
docs1] |
|
else: |
|
docs1 = [] |
|
else: |
|
if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")): |
|
file = 'http://' + file |
|
docs1 = UnstructuredURLLoader(urls=[file]).load() |
|
if len(docs1) == 0 and have_playwright: |
|
|
|
from langchain.document_loaders import PlaywrightURLLoader |
|
docs1 = PlaywrightURLLoader(urls=[file]).load() |
|
if len(docs1) == 0 and have_selenium: |
|
|
|
|
|
from langchain.document_loaders import SeleniumURLLoader |
|
from selenium.common.exceptions import WebDriverException |
|
try: |
|
docs1 = SeleniumURLLoader(urls=[file]).load() |
|
except WebDriverException as e: |
|
print("No web driver: %s" % str(e), flush=True) |
|
[x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1] |
|
docs1 = clean_doc(docs1) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif is_txt: |
|
base_path = "user_paste" |
|
source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10]) |
|
makedirs(os.path.dirname(source_file), exist_ok=True) |
|
with open(source_file, "wt") as f: |
|
f.write(file) |
|
metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt') |
|
doc1 = Document(page_content=file, metadata=metadata) |
|
doc1 = clean_doc(doc1) |
|
elif file.lower().endswith('.html') or file.lower().endswith('.mhtml'): |
|
docs1 = UnstructuredHTMLLoader(file_path=file).load() |
|
add_meta(docs1, file) |
|
docs1 = clean_doc(docs1) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.HTML) |
|
elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and (have_libreoffice or True): |
|
docs1 = UnstructuredWordDocumentLoader(file_path=file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif (file.lower().endswith('.xlsx') or file.lower().endswith('.xls')) and (have_libreoffice or True): |
|
docs1 = UnstructuredExcelLoader(file_path=file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.odt'): |
|
docs1 = UnstructuredODTLoader(file_path=file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('pptx') or file.lower().endswith('ppt'): |
|
docs1 = UnstructuredPowerPointLoader(file_path=file).load() |
|
add_meta(docs1, file) |
|
docs1 = clean_doc(docs1) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.txt'): |
|
|
|
docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load() |
|
|
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
doc1 = clean_doc(doc1) |
|
add_meta(doc1, file) |
|
elif file.lower().endswith('.rtf'): |
|
docs1 = UnstructuredRTFLoader(file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.md'): |
|
docs1 = UnstructuredMarkdownLoader(file).load() |
|
add_meta(docs1, file) |
|
docs1 = clean_doc(docs1) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.MARKDOWN) |
|
elif file.lower().endswith('.enex'): |
|
docs1 = EverNoteLoader(file).load() |
|
add_meta(doc1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.epub'): |
|
docs1 = UnstructuredEPubLoader(file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.jpeg') or file.lower().endswith('.jpg') or file.lower().endswith('.png'): |
|
docs1 = [] |
|
if have_tesseract and enable_ocr: |
|
|
|
docs1.extend(UnstructuredImageLoader(file).load()) |
|
add_meta(docs1, file) |
|
if enable_captions: |
|
|
|
if caption_loader is not None and not isinstance(caption_loader, (str, bool)): |
|
|
|
caption_loader.set_image_paths([file]) |
|
docs1c = caption_loader.load() |
|
add_meta(docs1c, file) |
|
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c] |
|
docs1.extend(docs1c) |
|
else: |
|
from image_captions import H2OImageCaptionLoader |
|
caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu', |
|
blip_model=captions_model, |
|
blip_processor=captions_model) |
|
caption_loader.set_image_paths([file]) |
|
docs1c = caption_loader.load() |
|
add_meta(docs1c, file) |
|
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c] |
|
docs1.extend(docs1c) |
|
for doci in docs1: |
|
doci.metadata['source'] = doci.metadata['image_path'] |
|
doci.metadata['hash'] = hash_file(doci.metadata['source']) |
|
if docs1: |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.msg'): |
|
raise RuntimeError("Not supported, GPL3 license") |
|
|
|
|
|
elif file.lower().endswith('.eml'): |
|
try: |
|
docs1 = UnstructuredEmailLoader(file).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
except ValueError as e: |
|
if 'text/html content not found in email' in str(e): |
|
|
|
|
|
docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
else: |
|
raise |
|
|
|
|
|
|
|
|
|
elif file.lower().endswith('.rst'): |
|
with open(file, "r") as f: |
|
doc1 = Document(page_content=f.read(), metadata={"source": file}) |
|
add_meta(doc1, file) |
|
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.RST) |
|
elif file.lower().endswith('.pdf'): |
|
env_gpt4all_file = ".env_gpt4all" |
|
from dotenv import dotenv_values |
|
env_kwargs = dotenv_values(env_gpt4all_file) |
|
pdf_class_name = env_kwargs.get('PDF_CLASS_NAME', 'PyMuPDFParser') |
|
doc1 = [] |
|
handled = False |
|
if have_pymupdf and pdf_class_name == 'PyMuPDFParser': |
|
|
|
from langchain.document_loaders import PyMuPDFLoader |
|
|
|
doc1 = PyMuPDFLoader(file).load() |
|
|
|
handled |= len(doc1) > 0 |
|
doc1 = [x for x in doc1 if x.page_content] |
|
doc1 = clean_doc(doc1) |
|
if len(doc1) == 0: |
|
doc1 = UnstructuredPDFLoader(file).load() |
|
handled |= len(doc1) > 0 |
|
|
|
doc1 = [x for x in doc1 if x.page_content] |
|
|
|
if len(doc1) == 0: |
|
|
|
|
|
doc1 = PyPDFLoader(file).load() |
|
handled |= len(doc1) > 0 |
|
|
|
doc1 = [x for x in doc1 if x.page_content] |
|
doc1 = clean_doc(doc1) |
|
if have_pymupdf and len(doc1) == 0: |
|
|
|
from langchain.document_loaders import PyMuPDFLoader |
|
|
|
doc1 = PyMuPDFLoader(file).load() |
|
handled |= len(doc1) > 0 |
|
|
|
doc1 = [x for x in doc1 if x.page_content] |
|
doc1 = clean_doc(doc1) |
|
if len(doc1) == 0 and enable_pdf_ocr == 'auto' or enable_pdf_ocr == 'on': |
|
|
|
doc1 = UnstructuredPDFLoader(file, strategy='ocr_only').load() |
|
handled |= len(doc1) > 0 |
|
|
|
doc1 = [x for x in doc1 if x.page_content] |
|
|
|
|
|
if len(doc1) == 0: |
|
|
|
if handled: |
|
raise ValueError("%s had no valid text, but meta data was parsed" % file) |
|
else: |
|
raise ValueError("%s had no valid text and no meta data was parsed" % file) |
|
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size) |
|
add_meta(doc1, file) |
|
elif file.lower().endswith('.csv'): |
|
doc1 = CSVLoader(file).load() |
|
add_meta(doc1, file) |
|
elif file.lower().endswith('.py'): |
|
doc1 = PythonLoader(file).load() |
|
add_meta(doc1, file) |
|
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.PYTHON) |
|
elif file.lower().endswith('.toml'): |
|
doc1 = TomlLoader(file).load() |
|
add_meta(doc1, file) |
|
elif file.lower().endswith('.urls'): |
|
with open(file, "r") as f: |
|
docs1 = UnstructuredURLLoader(urls=f.readlines()).load() |
|
add_meta(docs1, file) |
|
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size) |
|
elif file.lower().endswith('.zip'): |
|
with zipfile.ZipFile(file, 'r') as zip_ref: |
|
|
|
|
|
zip_ref.extractall(base_path) |
|
|
|
doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception, n_jobs=n_jobs) |
|
else: |
|
raise RuntimeError("No file handler for %s" % os.path.basename(file)) |
|
|
|
|
|
|
|
if not isinstance(doc1, list): |
|
if chunk: |
|
docs = chunk_sources([doc1], chunk=chunk, chunk_size=chunk_size) |
|
else: |
|
docs = [doc1] |
|
elif isinstance(doc1, list) and len(doc1) == 1: |
|
if chunk: |
|
docs = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size) |
|
else: |
|
docs = doc1 |
|
else: |
|
docs = doc1 |
|
|
|
assert isinstance(docs, list) |
|
return docs |
|
|
|
|
|
def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True, |
|
chunk=True, chunk_size=512, |
|
n_jobs=-1, |
|
is_url=False, is_txt=False, |
|
enable_captions=True, |
|
captions_model=None, |
|
enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None): |
|
if verbose: |
|
if is_url: |
|
print("Ingesting URL: %s" % file, flush=True) |
|
elif is_txt: |
|
print("Ingesting Text: %s" % file, flush=True) |
|
else: |
|
print("Ingesting file: %s" % file, flush=True) |
|
res = None |
|
try: |
|
|
|
res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception, |
|
chunk=chunk, chunk_size=chunk_size, |
|
n_jobs=n_jobs, |
|
is_url=is_url, is_txt=is_txt, |
|
enable_captions=enable_captions, |
|
captions_model=captions_model, |
|
enable_ocr=enable_ocr, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
caption_loader=caption_loader) |
|
except BaseException as e: |
|
print("Failed to ingest %s due to %s" % (file, traceback.format_exc())) |
|
if fail_any_exception: |
|
raise |
|
else: |
|
exception_doc = Document( |
|
page_content='', |
|
metadata={"source": file, "exception": '%s Exception: %s' % (file, str(e)), |
|
"traceback": traceback.format_exc()}) |
|
res = [exception_doc] |
|
if return_file: |
|
base_tmp = "temp_path_to_doc1" |
|
if not os.path.isdir(base_tmp): |
|
os.makedirs(base_tmp, exist_ok=True) |
|
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle") |
|
with open(filename, 'wb') as f: |
|
pickle.dump(res, f) |
|
return filename |
|
return res |
|
|
|
|
|
def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1, |
|
chunk=True, chunk_size=512, |
|
url=None, text=None, |
|
enable_captions=True, |
|
captions_model=None, |
|
caption_loader=None, |
|
enable_ocr=False, |
|
enable_pdf_ocr='auto', |
|
existing_files=[], |
|
existing_hash_ids={}, |
|
): |
|
|
|
globs_image_types = [] |
|
globs_non_image_types = [] |
|
if not path_or_paths and not url and not text: |
|
return [] |
|
elif url: |
|
globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url] |
|
elif text: |
|
globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text] |
|
elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths): |
|
|
|
path = path_or_paths |
|
|
|
[globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True)) |
|
for ftype in image_types] |
|
[globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True)) |
|
for ftype in non_image_types] |
|
else: |
|
if isinstance(path_or_paths, str): |
|
if os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths): |
|
path_or_paths = [path_or_paths] |
|
else: |
|
|
|
return [] |
|
|
|
assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), \ |
|
"Wrong type for path_or_paths: %s %s" % (path_or_paths, type(path_or_paths)) |
|
|
|
globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types])) |
|
|
|
|
|
|
|
set_globs_image_types = set(globs_image_types) |
|
globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types]) |
|
|
|
|
|
|
|
assert not existing_files, "DEV: assume not using this approach" |
|
if existing_files: |
|
set_skip_files = set(existing_files) |
|
globs_image_types = [x for x in globs_image_types if x not in set_skip_files] |
|
globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files] |
|
if existing_hash_ids: |
|
|
|
|
|
|
|
existing_hash_ids_set = set(existing_hash_ids.items()) |
|
hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items()) |
|
hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items()) |
|
|
|
|
|
new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys()) |
|
new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys()) |
|
globs_image_types = [x for x in globs_image_types if x in new_files_image] |
|
globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image] |
|
|
|
|
|
if caption_loader and not isinstance(caption_loader, (bool, str)) and \ |
|
caption_loader.device != 'cpu' or \ |
|
get_device() == 'cuda': |
|
|
|
n_jobs_image = 1 |
|
else: |
|
n_jobs_image = n_jobs |
|
|
|
return_file = True |
|
is_url = url is not None |
|
is_txt = text is not None |
|
kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception, |
|
return_file=return_file, |
|
chunk=chunk, chunk_size=chunk_size, |
|
n_jobs=n_jobs, |
|
is_url=is_url, |
|
is_txt=is_txt, |
|
enable_captions=enable_captions, |
|
captions_model=captions_model, |
|
caption_loader=caption_loader, |
|
enable_ocr=enable_ocr, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
) |
|
|
|
if n_jobs != 1 and len(globs_non_image_types) > 1: |
|
|
|
|
|
documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')( |
|
delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types |
|
) |
|
else: |
|
documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_non_image_types)] |
|
|
|
|
|
if n_jobs_image != 1 and len(globs_image_types) > 1: |
|
|
|
|
|
image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')( |
|
delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types |
|
) |
|
else: |
|
image_documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_image_types)] |
|
|
|
|
|
documents += image_documents |
|
|
|
if return_file: |
|
|
|
files = documents.copy() |
|
documents = [] |
|
for fil in files: |
|
with open(fil, 'rb') as f: |
|
documents.extend(pickle.load(f)) |
|
|
|
remove(fil) |
|
else: |
|
documents = reduce(concat, documents) |
|
return documents |
|
|
|
|
|
def prep_langchain(persist_directory, |
|
load_db_if_exists, |
|
db_type, use_openai_embedding, langchain_mode, langchain_mode_paths, |
|
hf_embedding_model, n_jobs=-1, kwargs_make_db={}): |
|
""" |
|
do prep first time, involving downloads |
|
# FIXME: Add github caching then add here |
|
:return: |
|
""" |
|
assert langchain_mode not in ['MyData'], "Should not prep scratch data" |
|
|
|
db_dir_exists = os.path.isdir(persist_directory) |
|
user_path = langchain_mode_paths.get(langchain_mode) |
|
|
|
if db_dir_exists and user_path is None: |
|
print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True) |
|
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, |
|
hf_embedding_model) |
|
else: |
|
if db_dir_exists and user_path is not None: |
|
print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % ( |
|
persist_directory, user_path), flush=True) |
|
elif not db_dir_exists: |
|
print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True) |
|
db = None |
|
if langchain_mode in ['All', 'DriverlessAI docs']: |
|
|
|
get_dai_docs(from_hf=True) |
|
|
|
if langchain_mode in ['All', 'wiki']: |
|
get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit']) |
|
|
|
langchain_kwargs = kwargs_make_db.copy() |
|
langchain_kwargs.update(locals()) |
|
db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs) |
|
|
|
return db |
|
|
|
|
|
import posthog |
|
|
|
posthog.disabled = True |
|
|
|
|
|
class FakeConsumer(object): |
|
def __init__(self, *args, **kwargs): |
|
pass |
|
|
|
def run(self): |
|
pass |
|
|
|
def pause(self): |
|
pass |
|
|
|
def upload(self): |
|
pass |
|
|
|
def next(self): |
|
pass |
|
|
|
def request(self, batch): |
|
pass |
|
|
|
|
|
posthog.Consumer = FakeConsumer |
|
|
|
|
|
def check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, langchain_mode): |
|
changed_db = False |
|
if load_embed(db) != (use_openai_embedding, hf_embedding_model): |
|
print("Detected new embedding, updating db: %s" % langchain_mode, flush=True) |
|
|
|
db_get = get_documents(db) |
|
sources = [Document(page_content=result[0], metadata=result[1] or {}) |
|
for result in zip(db_get['documents'], db_get['metadatas'])] |
|
|
|
persist_directory = db._persist_directory |
|
shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak") |
|
db_type = 'chroma' |
|
load_db_if_exists = False |
|
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type, |
|
persist_directory=persist_directory, load_db_if_exists=load_db_if_exists, |
|
langchain_mode=langchain_mode, |
|
collection_name=None, |
|
hf_embedding_model=hf_embedding_model) |
|
if False: |
|
|
|
|
|
client_collection = db._client.get_collection(name=db._collection.name, |
|
embedding_function=db._collection._embedding_function) |
|
client_collection.upsert(ids=db_get['ids'], metadatas=db_get['metadatas'], documents=db_get['documents']) |
|
changed_db = True |
|
print("Done updating db for new embedding: %s" % langchain_mode, flush=True) |
|
|
|
return db, changed_db |
|
|
|
|
|
def get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, |
|
hf_embedding_model, verbose=False, check_embedding=True): |
|
if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir( |
|
os.path.join(persist_directory, 'index')): |
|
if db is None: |
|
if verbose: |
|
print("DO Loading db: %s" % langchain_mode, flush=True) |
|
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model) |
|
from chromadb.config import Settings |
|
client_settings = Settings(anonymized_telemetry=False, |
|
chroma_db_impl="duckdb+parquet", |
|
persist_directory=persist_directory) |
|
db = Chroma(persist_directory=persist_directory, embedding_function=embedding, |
|
collection_name=langchain_mode.replace(' ', '_'), |
|
client_settings=client_settings) |
|
if verbose: |
|
print("DONE Loading db: %s" % langchain_mode, flush=True) |
|
else: |
|
if verbose: |
|
print("USING already-loaded db: %s" % langchain_mode, flush=True) |
|
if check_embedding: |
|
db_trial, changed_db = check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, |
|
langchain_mode) |
|
if changed_db: |
|
db = db_trial |
|
|
|
if db is not None: |
|
db.persist() |
|
clear_embedding(db) |
|
save_embed(db, use_openai_embedding, hf_embedding_model) |
|
return db |
|
return None |
|
|
|
|
|
def clear_embedding(db): |
|
if db is None: |
|
return |
|
|
|
db._embedding_function.client.cpu() |
|
clear_torch_cache() |
|
|
|
|
|
def make_db(**langchain_kwargs): |
|
func_names = list(inspect.signature(_make_db).parameters) |
|
missing_kwargs = [x for x in func_names if x not in langchain_kwargs] |
|
defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()} |
|
for k in missing_kwargs: |
|
if k in defaults_db: |
|
langchain_kwargs[k] = defaults_db[k] |
|
|
|
missing_kwargs = [x for x in func_names if x not in langchain_kwargs] |
|
assert not missing_kwargs, "Missing kwargs for make_db: %s" % missing_kwargs |
|
|
|
langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names} |
|
return _make_db(**langchain_kwargs) |
|
|
|
|
|
def save_embed(db, use_openai_embedding, hf_embedding_model): |
|
if db is not None: |
|
embed_info_file = os.path.join(db._persist_directory, 'embed_info') |
|
with open(embed_info_file, 'wb') as f: |
|
pickle.dump((use_openai_embedding, hf_embedding_model), f) |
|
return use_openai_embedding, hf_embedding_model |
|
|
|
|
|
def load_embed(db): |
|
embed_info_file = os.path.join(db._persist_directory, 'embed_info') |
|
if os.path.isfile(embed_info_file): |
|
with open(embed_info_file, 'rb') as f: |
|
use_openai_embedding, hf_embedding_model = pickle.load(f) |
|
else: |
|
|
|
use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2" |
|
return use_openai_embedding, hf_embedding_model |
|
|
|
|
|
def get_persist_directory(langchain_mode): |
|
return 'db_dir_%s' % langchain_mode |
|
|
|
|
|
def _make_db(use_openai_embedding=False, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
first_para=False, text_limit=None, |
|
chunk=True, chunk_size=512, |
|
langchain_mode=None, |
|
langchain_mode_paths=None, |
|
db_type='faiss', |
|
load_db_if_exists=True, |
|
db=None, |
|
n_jobs=-1, |
|
verbose=False): |
|
persist_directory = get_persist_directory(langchain_mode) |
|
user_path = langchain_mode_paths.get(langchain_mode) |
|
|
|
db_trial = get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode, |
|
hf_embedding_model, verbose=verbose) |
|
if db_trial is not None: |
|
db = db_trial |
|
|
|
sources = [] |
|
if not db: |
|
if langchain_mode in ['wiki_full']: |
|
from read_wiki_full import get_all_documents |
|
small_test = None |
|
print("Generating new wiki", flush=True) |
|
sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2) |
|
print("Got new wiki", flush=True) |
|
if chunk: |
|
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size) |
|
print("Chunked new wiki", flush=True) |
|
sources.extend(sources1) |
|
elif langchain_mode in ['wiki']: |
|
sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit) |
|
if chunk: |
|
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size) |
|
sources.extend(sources1) |
|
elif langchain_mode in ['github h2oGPT']: |
|
|
|
sources1 = get_github_docs("h2oai", "h2ogpt") |
|
|
|
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size) |
|
sources.extend(sources1) |
|
elif langchain_mode in ['DriverlessAI docs']: |
|
sources1 = get_dai_docs(from_hf=True) |
|
if chunk and False: |
|
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size) |
|
sources.extend(sources1) |
|
if user_path: |
|
|
|
if db is not None: |
|
|
|
|
|
existing_files = [] |
|
existing_hash_ids = get_existing_hash_ids(db) |
|
else: |
|
|
|
existing_files = [] |
|
existing_hash_ids = [] |
|
|
|
|
|
|
|
sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size, |
|
existing_files=existing_files, existing_hash_ids=existing_hash_ids) |
|
new_metadata_sources = set([x.metadata['source'] for x in sources1]) |
|
if new_metadata_sources: |
|
print("Loaded %s new files as sources to add to %s" % (len(new_metadata_sources), langchain_mode), |
|
flush=True) |
|
if verbose: |
|
print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True) |
|
sources.extend(sources1) |
|
print("Loaded %s sources for potentially adding to %s" % (len(sources), langchain_mode), flush=True) |
|
|
|
|
|
if not sources: |
|
if verbose: |
|
if db is not None: |
|
print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True) |
|
else: |
|
print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True) |
|
return db, 0, [] |
|
if verbose: |
|
if db is not None: |
|
print("Generating db", flush=True) |
|
else: |
|
print("Adding to db", flush=True) |
|
if not db: |
|
if sources: |
|
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type, |
|
persist_directory=persist_directory, langchain_mode=langchain_mode, |
|
hf_embedding_model=hf_embedding_model) |
|
if verbose: |
|
print("Generated db", flush=True) |
|
else: |
|
print("Did not generate db since no sources", flush=True) |
|
new_sources_metadata = [x.metadata for x in sources] |
|
elif user_path is not None: |
|
print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True) |
|
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type, |
|
use_openai_embedding=use_openai_embedding, |
|
hf_embedding_model=hf_embedding_model) |
|
print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True) |
|
else: |
|
new_sources_metadata = [x.metadata for x in sources] |
|
|
|
return db, len(new_sources_metadata), new_sources_metadata |
|
|
|
|
|
def get_metadatas(db): |
|
from langchain.vectorstores import FAISS |
|
if isinstance(db, FAISS): |
|
metadatas = [v.metadata for k, v in db.docstore._dict.items()] |
|
elif isinstance(db, Chroma): |
|
metadatas = get_documents(db)['metadatas'] |
|
else: |
|
|
|
|
|
metadatas = [x.metadata for x in db.similarity_search("", k=10000)] |
|
return metadatas |
|
|
|
|
|
def get_documents(db): |
|
if hasattr(db, '_persist_directory'): |
|
name_path = os.path.basename(db._persist_directory) |
|
base_path = 'locks' |
|
makedirs(base_path) |
|
with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)): |
|
|
|
return _get_documents(db) |
|
else: |
|
return _get_documents(db) |
|
|
|
|
|
def _get_documents(db): |
|
from langchain.vectorstores import FAISS |
|
if isinstance(db, FAISS): |
|
documents = [v for k, v in db.docstore._dict.items()] |
|
elif isinstance(db, Chroma): |
|
documents = db.get() |
|
else: |
|
|
|
|
|
documents = [x for x in db.similarity_search("", k=10000)] |
|
return documents |
|
|
|
|
|
def get_docs_and_meta(db, top_k_docs, filter_kwargs={}): |
|
if hasattr(db, '_persist_directory'): |
|
name_path = os.path.basename(db._persist_directory) |
|
base_path = 'locks' |
|
makedirs(base_path) |
|
with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)): |
|
return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs) |
|
else: |
|
return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs) |
|
|
|
|
|
def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}): |
|
from langchain.vectorstores import FAISS |
|
if isinstance(db, Chroma): |
|
db_get = db._collection.get(where=filter_kwargs.get('filter')) |
|
db_metadatas = db_get['metadatas'] |
|
db_documents = db_get['documents'] |
|
elif isinstance(db, FAISS): |
|
import itertools |
|
db_metadatas = get_metadatas(db) |
|
|
|
|
|
db_documents = list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values()) |
|
else: |
|
db_metadatas = get_metadatas(db) |
|
db_documents = get_documents(db) |
|
return db_documents, db_metadatas |
|
|
|
|
|
def get_existing_files(db): |
|
metadatas = get_metadatas(db) |
|
metadata_sources = set([x['source'] for x in metadatas]) |
|
return metadata_sources |
|
|
|
|
|
def get_existing_hash_ids(db): |
|
metadatas = get_metadatas(db) |
|
|
|
metadata_hash_ids = {x['source']: x.get('hashid') for x in metadatas} |
|
return metadata_hash_ids |
|
|
|
|
|
def run_qa_db(**kwargs): |
|
func_names = list(inspect.signature(_run_qa_db).parameters) |
|
|
|
kwargs['answer_with_sources'] = True |
|
kwargs['show_rank'] = False |
|
missing_kwargs = [x for x in func_names if x not in kwargs] |
|
assert not missing_kwargs, "Missing kwargs for run_qa_db: %s" % missing_kwargs |
|
|
|
kwargs = {k: v for k, v in kwargs.items() if k in func_names} |
|
try: |
|
return _run_qa_db(**kwargs) |
|
finally: |
|
clear_torch_cache() |
|
|
|
|
|
def _run_qa_db(query=None, |
|
iinput=None, |
|
context=None, |
|
use_openai_model=False, use_openai_embedding=False, |
|
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512, |
|
langchain_mode_paths={}, |
|
detect_user_path_changes_every_query=False, |
|
db_type='faiss', |
|
model_name=None, model=None, tokenizer=None, inference_server=None, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
stream_output=False, |
|
prompter=None, |
|
prompt_type=None, |
|
prompt_dict=None, |
|
answer_with_sources=True, |
|
cut_distance=1.64, |
|
add_chat_history_to_context=True, |
|
sanitize_bot_response=False, |
|
show_rank=False, |
|
use_llm_if_no_docs=False, |
|
load_db_if_exists=False, |
|
db=None, |
|
do_sample=False, |
|
temperature=0.1, |
|
top_k=40, |
|
top_p=0.7, |
|
num_beams=1, |
|
max_new_tokens=256, |
|
min_new_tokens=1, |
|
early_stopping=False, |
|
max_time=180, |
|
repetition_penalty=1.0, |
|
num_return_sequences=1, |
|
langchain_mode=None, |
|
langchain_action=None, |
|
langchain_agents=None, |
|
document_subset=DocumentSubset.Relevant.name, |
|
document_choice=[DocumentChoice.ALL.value], |
|
n_jobs=-1, |
|
verbose=False, |
|
cli=False, |
|
reverse_docs=True, |
|
lora_weights='', |
|
auto_reduce_chunks=True, |
|
max_chunks=100, |
|
): |
|
""" |
|
|
|
:param query: |
|
:param use_openai_model: |
|
:param use_openai_embedding: |
|
:param first_para: |
|
:param text_limit: |
|
:param top_k_docs: |
|
:param chunk: |
|
:param chunk_size: |
|
:param langchain_mode_paths: dict of langchain_mode -> user path to glob recursively from |
|
:param db_type: 'faiss' for in-memory db or 'chroma' or 'weaviate' for persistent db |
|
:param model_name: model name, used to switch behaviors |
|
:param model: pre-initialized model, else will make new one |
|
:param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None |
|
:param answer_with_sources |
|
:return: |
|
""" |
|
assert langchain_mode_paths is not None |
|
if model is not None: |
|
assert model_name is not None |
|
assert query is not None |
|
assert prompter is not None or prompt_type is not None or model is None |
|
if prompter is not None: |
|
prompt_type = prompter.prompt_type |
|
prompt_dict = prompter.prompt_dict |
|
if model is not None: |
|
assert prompt_type is not None |
|
if prompt_type == PromptType.custom.name: |
|
assert prompt_dict is not None |
|
else: |
|
prompt_dict = '' |
|
assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0 |
|
|
|
|
|
llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name, |
|
model=model, |
|
tokenizer=tokenizer, |
|
inference_server=inference_server, |
|
stream_output=stream_output, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
num_beams=num_beams, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=min_new_tokens, |
|
early_stopping=early_stopping, |
|
max_time=max_time, |
|
repetition_penalty=repetition_penalty, |
|
num_return_sequences=num_return_sequences, |
|
prompt_type=prompt_type, |
|
prompt_dict=prompt_dict, |
|
prompter=prompter, |
|
context=context if add_chat_history_to_context else '', |
|
iinput=iinput if add_chat_history_to_context else '', |
|
sanitize_bot_response=sanitize_bot_response, |
|
verbose=verbose, |
|
) |
|
|
|
use_docs_planned = False |
|
scores = [] |
|
chain = None |
|
|
|
if isinstance(document_choice, str): |
|
|
|
document_choice = [document_choice] |
|
|
|
func_names = list(inspect.signature(get_chain).parameters) |
|
sim_kwargs = {k: v for k, v in locals().items() if k in func_names} |
|
missing_kwargs = [x for x in func_names if x not in sim_kwargs] |
|
assert not missing_kwargs, "Missing: %s" % missing_kwargs |
|
docs, chain, scores, use_docs_planned, have_any_docs = get_chain(**sim_kwargs) |
|
if document_subset in non_query_commands: |
|
formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs]) |
|
if not formatted_doc_chunks and not use_llm_if_no_docs: |
|
yield "No sources", '' |
|
return |
|
|
|
yield formatted_doc_chunks, '' |
|
return |
|
if not use_llm_if_no_docs: |
|
if not docs and langchain_action in [LangChainAction.SUMMARIZE_MAP.value, |
|
LangChainAction.SUMMARIZE_ALL.value, |
|
LangChainAction.SUMMARIZE_REFINE.value]: |
|
ret = 'No relevant documents to summarize.' if have_any_docs else 'No documents to summarize.' |
|
extra = '' |
|
yield ret, extra |
|
return |
|
if not docs and langchain_mode not in [LangChainMode.DISABLED.value, |
|
LangChainMode.LLM.value]: |
|
ret = 'No relevant documents to query.' if have_any_docs else 'No documents to query.' |
|
extra = '' |
|
yield ret, extra |
|
return |
|
|
|
if chain is None and model_name not in non_hf_types: |
|
|
|
|
|
return |
|
|
|
|
|
import torch |
|
device, torch_dtype, context_class = get_device_dtype() |
|
with torch.no_grad(): |
|
have_lora_weights = lora_weights not in [no_lora_str, '', None] |
|
context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast |
|
with context_class_cast(device): |
|
if stream_output and streamer: |
|
answer = None |
|
import queue |
|
bucket = queue.Queue() |
|
thread = EThread(target=chain, streamer=streamer, bucket=bucket) |
|
thread.start() |
|
outputs = "" |
|
prompt = None |
|
try: |
|
for new_text in streamer: |
|
|
|
if bucket.qsize() > 0 or thread.exc: |
|
thread.join() |
|
outputs += new_text |
|
if prompter: |
|
output1 = prompter.get_response(outputs, prompt=prompt, |
|
sanitize_bot_response=sanitize_bot_response) |
|
yield output1, '' |
|
else: |
|
yield outputs, '' |
|
except BaseException: |
|
|
|
if thread.exc: |
|
raise thread.exc |
|
raise |
|
finally: |
|
|
|
if not thread.exc: |
|
answer = thread.join() |
|
|
|
if thread.exc: |
|
raise thread.exc |
|
|
|
|
|
else: |
|
answer = chain() |
|
|
|
if not use_docs_planned: |
|
ret = answer['output_text'] |
|
extra = '' |
|
yield ret, extra |
|
elif answer is not None: |
|
ret, extra = get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=verbose) |
|
yield ret, extra |
|
return |
|
|
|
|
|
def get_chain(query=None, |
|
iinput=None, |
|
context=None, |
|
use_openai_model=False, use_openai_embedding=False, |
|
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512, |
|
langchain_mode_paths=None, |
|
detect_user_path_changes_every_query=False, |
|
db_type='faiss', |
|
model_name=None, |
|
inference_server='', |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
prompt_type=None, |
|
prompt_dict=None, |
|
cut_distance=1.1, |
|
add_chat_history_to_context=True, |
|
load_db_if_exists=False, |
|
db=None, |
|
langchain_mode=None, |
|
langchain_action=None, |
|
langchain_agents=None, |
|
document_subset=DocumentSubset.Relevant.name, |
|
document_choice=[DocumentChoice.ALL.value], |
|
n_jobs=-1, |
|
|
|
llm=None, |
|
tokenizer=None, |
|
verbose=False, |
|
reverse_docs=True, |
|
|
|
|
|
auto_reduce_chunks=True, |
|
max_chunks=100, |
|
): |
|
assert langchain_agents is not None |
|
|
|
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types: |
|
if langchain_mode in ['Disabled', 'LLM']: |
|
use_docs_planned = False |
|
else: |
|
use_docs_planned = True |
|
else: |
|
use_docs_planned = True |
|
|
|
|
|
|
|
|
|
|
|
if top_k_docs == -1: |
|
k_db = 1000 if db_type == 'chroma' else 100 |
|
else: |
|
|
|
k_db = 1000 if db_type == 'chroma' else top_k_docs |
|
|
|
|
|
if not detect_user_path_changes_every_query and db is not None: |
|
|
|
|
|
|
|
if langchain_mode_paths is None: |
|
langchain_mode_paths = {} |
|
langchain_mode_paths = langchain_mode_paths.copy() |
|
langchain_mode_paths[langchain_mode] = None |
|
db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding, |
|
hf_embedding_model=hf_embedding_model, |
|
first_para=first_para, text_limit=text_limit, |
|
chunk=chunk, |
|
chunk_size=chunk_size, |
|
langchain_mode=langchain_mode, |
|
langchain_mode_paths=langchain_mode_paths, |
|
db_type=db_type, |
|
load_db_if_exists=load_db_if_exists, |
|
db=db, |
|
n_jobs=n_jobs, |
|
verbose=verbose) |
|
have_any_docs = db is not None |
|
if langchain_action == LangChainAction.QUERY.value: |
|
if iinput: |
|
query = "%s\n%s" % (query, iinput) |
|
|
|
if 'falcon' in model_name: |
|
extra = "According to only the information in the document sources provided within the context above, " |
|
prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends." |
|
elif inference_server in ['openai', 'openai_chat']: |
|
extra = "According to (primarily) the information in the document sources provided within context above, " |
|
prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends. If the answer cannot be primarily obtained from information within the context, then respond that the answer does not appear in the context of the documents." |
|
else: |
|
extra = "" |
|
prefix = "" |
|
if langchain_mode in ['Disabled', 'LLM'] or not use_docs_planned: |
|
template_if_no_docs = template = """%s{context}{question}""" % prefix |
|
else: |
|
template = """%s |
|
\"\"\" |
|
{context} |
|
\"\"\" |
|
%s{question}""" % (prefix, extra) |
|
template_if_no_docs = """%s{context}%s{question}""" % (prefix, extra) |
|
elif langchain_action in [LangChainAction.SUMMARIZE_ALL.value, LangChainAction.SUMMARIZE_MAP.value]: |
|
none = ['', '\n', None] |
|
if query in none and iinput in none: |
|
prompt_summary = "Using only the text above, write a condensed and concise summary:\n" |
|
elif query not in none: |
|
prompt_summary = "Focusing on %s, write a condensed and concise Summary:\n" % query |
|
elif iinput not in None: |
|
prompt_summary = iinput |
|
else: |
|
prompt_summary = "Focusing on %s, %s:\n" % (query, iinput) |
|
|
|
auto_reduce_chunks = False |
|
if langchain_action == LangChainAction.SUMMARIZE_MAP.value: |
|
fstring = '{text}' |
|
else: |
|
fstring = '{input_documents}' |
|
template = """In order to write a concise single-paragraph or bulleted list summary, pay attention to the following text: |
|
\"\"\" |
|
%s |
|
\"\"\"\n%s""" % (fstring, prompt_summary) |
|
template_if_no_docs = "Exactly only say: There are no documents to summarize." |
|
elif langchain_action in [LangChainAction.SUMMARIZE_REFINE]: |
|
template = '' |
|
template_if_no_docs = '' |
|
else: |
|
raise RuntimeError("No such langchain_action=%s" % langchain_action) |
|
|
|
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types: |
|
use_template = True |
|
else: |
|
use_template = False |
|
|
|
if db and use_docs_planned: |
|
base_path = 'locks' |
|
makedirs(base_path) |
|
if hasattr(db, '_persist_directory'): |
|
name_path = "sim_%s.lock" % os.path.basename(db._persist_directory) |
|
else: |
|
name_path = "sim.lock" |
|
lock_file = os.path.join(base_path, name_path) |
|
|
|
if not isinstance(db, Chroma): |
|
|
|
filter_kwargs = {} |
|
else: |
|
assert document_choice is not None, "Document choice was None" |
|
if len(document_choice) >= 1 and document_choice[0] == DocumentChoice.ALL.value: |
|
filter_kwargs = {} |
|
elif len(document_choice) >= 2: |
|
if document_choice[0] == DocumentChoice.ALL.value: |
|
|
|
document_choice = document_choice[1:] |
|
or_filter = [{"source": {"$eq": x}} for x in document_choice] |
|
filter_kwargs = dict(filter={"$or": or_filter}) |
|
elif len(document_choice) == 1: |
|
|
|
one_filter = [{"source": {"$eq": x}} for x in document_choice][0] |
|
filter_kwargs = dict(filter=one_filter) |
|
else: |
|
|
|
filter_kwargs = {} |
|
if langchain_mode in [LangChainMode.LLM.value]: |
|
docs = [] |
|
scores = [] |
|
elif document_subset == DocumentSubset.TopKSources.name or query in [None, '', '\n']: |
|
db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs) |
|
|
|
docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0) |
|
for result in zip(db_documents, db_metadatas)] |
|
|
|
|
|
doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas] |
|
doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas] |
|
docs_with_score = [x for _, _, x in |
|
sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1])) |
|
] |
|
|
|
docs_with_score = docs_with_score[:top_k_docs] |
|
docs = [x[0] for x in docs_with_score] |
|
scores = [x[1] for x in docs_with_score] |
|
have_any_docs |= len(docs) > 0 |
|
else: |
|
|
|
|
|
if top_k_docs == -1 or auto_reduce_chunks: |
|
|
|
top_k_docs_tokenize = 100 |
|
with filelock.FileLock(lock_file): |
|
docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[ |
|
:top_k_docs_tokenize] |
|
if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'): |
|
|
|
tokens = [len(llm.pipeline.tokenizer(x[0].page_content)['input_ids']) for x in docs_with_score] |
|
template_tokens = len(llm.pipeline.tokenizer(template)['input_ids']) |
|
elif inference_server in ['openai', 'openai_chat'] or use_openai_model or db_type in ['faiss', |
|
'weaviate']: |
|
|
|
tokens = [llm.get_num_tokens(x[0].page_content) for x in docs_with_score] |
|
template_tokens = llm.get_num_tokens(template) |
|
elif isinstance(tokenizer, FakeTokenizer): |
|
tokens = [tokenizer.num_tokens_from_string(x[0].page_content) for x in docs_with_score] |
|
template_tokens = tokenizer.num_tokens_from_string(template) |
|
else: |
|
|
|
tokens = [db._embedding_function.client.tokenize([x[0].page_content])['input_ids'].shape[1] for x in |
|
docs_with_score] |
|
template_tokens = db._embedding_function.client.tokenize([template])['input_ids'].shape[1] |
|
tokens_cumsum = np.cumsum(tokens) |
|
if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'max_input_tokens'): |
|
max_input_tokens = llm.pipeline.max_input_tokens |
|
elif inference_server in ['openai']: |
|
max_tokens = llm.modelname_to_contextsize(model_name) |
|
|
|
max_input_tokens = max_tokens - 256 |
|
elif inference_server in ['openai_chat']: |
|
max_tokens = model_token_mapping[model_name] |
|
|
|
max_input_tokens = max_tokens - 256 |
|
elif isinstance(tokenizer, FakeTokenizer): |
|
max_input_tokens = tokenizer.model_max_length - 256 |
|
else: |
|
|
|
max_input_tokens = 2048 - 256 |
|
max_input_tokens -= template_tokens |
|
|
|
where_res = np.where(tokens_cumsum < max_input_tokens)[0] |
|
if where_res.shape[0] == 0: |
|
|
|
top_k_docs_trial = 1 |
|
else: |
|
top_k_docs_trial = 1 + where_res[-1] |
|
if 0 < top_k_docs_trial < max_chunks: |
|
|
|
if top_k_docs == -1: |
|
top_k_docs = top_k_docs_trial |
|
else: |
|
top_k_docs = min(top_k_docs, top_k_docs_trial) |
|
if top_k_docs == -1: |
|
|
|
print("Unexpected large chunks and can't add to context, will add 1 anyways", flush=True) |
|
top_k_docs = 1 |
|
docs_with_score = docs_with_score[:top_k_docs] |
|
else: |
|
with filelock.FileLock(lock_file): |
|
docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs] |
|
|
|
|
|
|
|
if reverse_docs: |
|
docs_with_score.reverse() |
|
|
|
have_any_docs |= len(docs_with_score) > 0 |
|
docs = [x[0] for x in docs_with_score if x[1] < cut_distance] |
|
scores = [x[1] for x in docs_with_score if x[1] < cut_distance] |
|
if len(scores) > 0 and verbose: |
|
print("Distance: min: %s max: %s mean: %s median: %s" % |
|
(scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True) |
|
else: |
|
docs = [] |
|
scores = [] |
|
|
|
if not docs and use_docs_planned and model_name not in non_hf_types: |
|
|
|
return docs, None, [], False, have_any_docs |
|
|
|
if document_subset in non_query_commands: |
|
|
|
return docs, None, [], False, have_any_docs |
|
|
|
common_words_file = "data/NGSL_1.2_stats.csv.zip" |
|
if os.path.isfile(common_words_file) and langchain_mode == LangChainAction.QUERY.value: |
|
df = pd.read_csv("data/NGSL_1.2_stats.csv.zip") |
|
import string |
|
reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip() |
|
reduced_query_words = reduced_query.split(' ') |
|
set_common = set(df['Lemma'].values.tolist()) |
|
num_common = len([x.lower() in set_common for x in reduced_query_words]) |
|
frac_common = num_common / len(reduced_query) if reduced_query else 0 |
|
|
|
if verbose: |
|
print("frac_common: %s" % frac_common, flush=True) |
|
|
|
if len(docs) == 0: |
|
|
|
use_docs_planned = False |
|
template = template_if_no_docs |
|
|
|
if langchain_action == LangChainAction.QUERY.value: |
|
if use_template: |
|
|
|
|
|
prompt = PromptTemplate( |
|
|
|
input_variables=["context", "question"], |
|
template=template, |
|
) |
|
chain = load_qa_chain(llm, prompt=prompt) |
|
else: |
|
|
|
chain = load_qa_with_sources_chain(llm) |
|
if not use_docs_planned: |
|
chain_kwargs = dict(input_documents=[], question=query) |
|
else: |
|
chain_kwargs = dict(input_documents=docs, question=query) |
|
target = wrapped_partial(chain, chain_kwargs) |
|
elif langchain_action in [LangChainAction.SUMMARIZE_MAP.value, |
|
LangChainAction.SUMMARIZE_REFINE, |
|
LangChainAction.SUMMARIZE_ALL.value]: |
|
from langchain.chains.summarize import load_summarize_chain |
|
if langchain_action == LangChainAction.SUMMARIZE_MAP.value: |
|
prompt = PromptTemplate(input_variables=["text"], template=template) |
|
chain = load_summarize_chain(llm, chain_type="map_reduce", |
|
map_prompt=prompt, combine_prompt=prompt, return_intermediate_steps=True) |
|
target = wrapped_partial(chain, {"input_documents": docs}) |
|
elif langchain_action == LangChainAction.SUMMARIZE_ALL.value: |
|
assert use_template |
|
prompt = PromptTemplate(input_variables=["text"], template=template) |
|
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt, return_intermediate_steps=True) |
|
target = wrapped_partial(chain) |
|
elif langchain_action == LangChainAction.SUMMARIZE_REFINE.value: |
|
chain = load_summarize_chain(llm, chain_type="refine", return_intermediate_steps=True) |
|
target = wrapped_partial(chain) |
|
else: |
|
raise RuntimeError("No such langchain_action=%s" % langchain_action) |
|
else: |
|
raise RuntimeError("No such langchain_action=%s" % langchain_action) |
|
|
|
return docs, target, scores, use_docs_planned, have_any_docs |
|
|
|
|
|
def get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=False): |
|
if verbose: |
|
print("query: %s" % query, flush=True) |
|
print("answer: %s" % answer['output_text'], flush=True) |
|
|
|
if len(answer['input_documents']) == 0: |
|
extra = '' |
|
ret = answer['output_text'] + extra |
|
return ret, extra |
|
|
|
|
|
answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in |
|
zip(scores, answer['input_documents'])] |
|
answer_sources_dict = defaultdict(list) |
|
[answer_sources_dict[url].append(score) for score, url in answer_sources] |
|
answers_dict = {} |
|
for url, scores_url in answer_sources_dict.items(): |
|
answers_dict[url] = np.max(scores_url) |
|
answer_sources = [(score, url) for url, score in answers_dict.items()] |
|
answer_sources.sort(key=lambda x: x[0], reverse=True) |
|
if show_rank: |
|
|
|
|
|
answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)] |
|
sorted_sources_urls = "Ranked Sources:<br>" + "<br>".join(answer_sources) |
|
else: |
|
answer_sources = ['<li>%.2g | %s</li>' % (score, url) for score, url in answer_sources] |
|
sorted_sources_urls = f"{source_prefix}<p><ul>" + "<p>".join(answer_sources) |
|
sorted_sources_urls += f"</ul></p>{source_postfix}" |
|
|
|
if not answer['output_text'].endswith('\n'): |
|
answer['output_text'] += '\n' |
|
|
|
if answer_with_sources: |
|
extra = '\n' + sorted_sources_urls |
|
else: |
|
extra = '' |
|
ret = answer['output_text'] + extra |
|
return ret, extra |
|
|
|
|
|
def clean_doc(docs1): |
|
if not isinstance(docs1, (list, tuple, types.GeneratorType)): |
|
docs1 = [docs1] |
|
for doci, doc in enumerate(docs1): |
|
docs1[doci].page_content = '\n'.join([x.strip() for x in doc.page_content.split("\n") if x.strip()]) |
|
return docs1 |
|
|
|
|
|
def chunk_sources(sources, chunk=True, chunk_size=512, language=None): |
|
if not chunk: |
|
[x.metadata.update(dict(chunk_id=chunk_id)) for chunk_id, x in enumerate(sources)] |
|
return sources |
|
if not isinstance(sources, (list, tuple, types.GeneratorType)) and not callable(sources): |
|
|
|
sources = [sources] |
|
if language and False: |
|
|
|
|
|
|
|
keep_separator = True |
|
separators = RecursiveCharacterTextSplitter.get_separators_for_language(language) |
|
else: |
|
separators = ["\n\n", "\n", " ", ""] |
|
keep_separator = False |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, keep_separator=keep_separator, |
|
separators=separators) |
|
source_chunks = splitter.split_documents(sources) |
|
|
|
|
|
[x.metadata.update(dict(chunk_id=chunk_id)) for chunk_id, x in enumerate(source_chunks)] |
|
|
|
return source_chunks |
|
|
|
|
|
def get_db_from_hf(dest=".", db_dir='db_dir_DriverlessAI_docs.zip'): |
|
from huggingface_hub import hf_hub_download |
|
|
|
token = os.getenv('HUGGINGFACE_API_TOKEN', True) |
|
path_to_zip_file = hf_hub_download('h2oai/db_dirs', db_dir, token=token, repo_type='dataset') |
|
import zipfile |
|
with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref: |
|
persist_directory = os.path.dirname(zip_ref.namelist()[0]) |
|
remove(persist_directory) |
|
zip_ref.extractall(dest) |
|
return path_to_zip_file |
|
|
|
|
|
|
|
some_db_zips = [['db_dir_DriverlessAI_docs.zip', 'db_dir_DriverlessAI docs', 'CC-BY-NC license'], |
|
['db_dir_UserData.zip', 'db_dir_UserData', 'CC-BY license for ArXiv'], |
|
['db_dir_github_h2oGPT.zip', 'db_dir_github h2oGPT', 'ApacheV2 license'], |
|
['db_dir_wiki.zip', 'db_dir_wiki', 'CC-BY-SA Wikipedia license'], |
|
|
|
] |
|
|
|
all_db_zips = some_db_zips + \ |
|
[['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'], |
|
] |
|
|
|
|
|
def get_some_dbs_from_hf(dest='.', db_zips=None): |
|
if db_zips is None: |
|
db_zips = some_db_zips |
|
for db_dir, dir_expected, license1 in db_zips: |
|
path_to_zip_file = get_db_from_hf(dest=dest, db_dir=db_dir) |
|
assert os.path.isfile(path_to_zip_file), "Missing zip in %s" % path_to_zip_file |
|
if dir_expected: |
|
assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected |
|
assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected |
|
|
|
|
|
def _create_local_weaviate_client(): |
|
WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080") |
|
WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME') |
|
WEAVIATE_PASSWORD = os.getenv('WEAVIATE_PASSWORD') |
|
WEAVIATE_SCOPE = os.getenv('WEAVIATE_SCOPE', "offline_access") |
|
|
|
resource_owner_config = None |
|
try: |
|
import weaviate |
|
if WEAVIATE_USERNAME is not None and WEAVIATE_PASSWORD is not None: |
|
resource_owner_config = weaviate.AuthClientPassword( |
|
username=WEAVIATE_USERNAME, |
|
password=WEAVIATE_PASSWORD, |
|
scope=WEAVIATE_SCOPE |
|
) |
|
|
|
client = weaviate.Client(WEAVIATE_URL, auth_client_secret=resource_owner_config) |
|
return client |
|
except Exception as e: |
|
print(f"Failed to create Weaviate client: {e}") |
|
return None |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|