ccareaga commited on
Commit
1fb8234
1 Parent(s): 8a26694

Updated readme, added hf paper links

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  title: Intrinsic
3
  emoji: 🐢
4
- colorFrom: yellow
5
  colorTo: red
6
  sdk: gradio
7
  sdk_version: 5.0.1
@@ -10,4 +10,21 @@ pinned: false
10
  license: cc-by-nc-sa-4.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Intrinsic
3
  emoji: 🐢
4
+ colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
7
  sdk_version: 5.0.1
 
10
  license: cc-by-nc-sa-4.0
11
  ---
12
 
13
+ # Intrinsic Image Decomposition
14
+
15
+ This space contains a demo for the following papers:
16
+
17
+ **Colorful Diffuse Intrinsic Image Decomposition in the Wild**, [Chris Careaga](https://ccareaga.github.io/) and [Yağız Aksoy](https://yaksoy.github.io), ACM Transactions on Graphics, 2024 \
18
+ [Project](https://yaksoy.github.io/ColorfulShading/) | [Paper](https://yaksoy.github.io/papers/TOG24-ColorfulShading.pdf) | [Supplementary](https://yaksoy.github.io/papers/TOG24-ColorfulShading-supp.pdf) | [HF](https://huggingface.co/papers/2409.13690)
19
+
20
+ **Intrinsic Image Decomposition via Ordinal Shading**, [Chris Careaga](https://ccareaga.github.io/) and [Yağız Aksoy](https://yaksoy.github.io), ACM Transactions on Graphics, 2023 \
21
+ [Project](https://yaksoy.github.io/intrinsic/) | [Paper](https://yaksoy.github.io/papers/TOG23-Intrinsic.pdf) | [Video](https://www.youtube.com/watch?v=pWtJd3hqL3c) | [Supplementary](https://yaksoy.github.io/papers/TOG23-Intrinsic-Supp.pdf) | [Data](https://github.com/compphoto/MIDIntrinsics) | [HF](https://huggingface.co/papers/2311.12792)
22
+
23
+
24
+ We propose a method for generating high-resolution intrinsic image decompositions for in-the-wild images. Our method consists of multiple stages. We first estimate a grayscale shading layer using our ordinal shading pipeline. We then estimate low-resolution chromaticity information to account for colorful illumination effects while maintaining global consistency. Using this initial colorful decomposition, we estimate a high-resolution, sparse albedo layer. We show that our decomposition allows us to train a diffuse shading estimation network using only a single rendered indoor dataset.
25
+
26
+ ![representative](https://github.com/compphoto/Intrinsic/blob/main/figures/representative.png?raw=true)
27
+
28
+ Our estimated components unlock multiple illumination-aware editing operations such as per-pixel white balancing and specularity removal:
29
+
30
+ ![applications](https://github.com/compphoto/Intrinsic/blob/main/figures/app_teaser2.jpg?raw=true)