conditions: - name: bm25-rocchio-d2q-t5-tuned display: BM25+Rocchio w/ doc2query-T5 (k1=2.18, b=0.86) display-html: BM25+Rocchio w/ doc2query-T5 (k1=2.18, b=0.86) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rocchio topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2395 R@1K: 0.9535 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4339 nDCG@10: 0.6559 R@1K: 0.8465 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4376 nDCG@10: 0.6224 R@1K: 0.8641 - name: bm25-rocchio-d2q-t5-default display: BM25+Rocchio w/ doc2query-T5 (k1=0.9, b=0.4) display-html: BM25+Rocchio w/ doc2query-T5 (k1=0.9, b=0.4) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2158 R@1K: 0.9467 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4469 nDCG@10: 0.6538 R@1K: 0.8855 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4246 nDCG@10: 0.6102 R@1K: 0.8675 - name: bm25-rocchio-default display: BM25+Rocchio (k1=0.9, b=0.4) display-html: BM25+Rocchio (k1=0.9, b=0.4) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --rocchio topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1595 R@1K: 0.8620 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3474 nDCG@10: 0.5275 R@1K: 0.8007 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.3115 nDCG@10: 0.4910 R@1K: 0.8156 - name: bm25-rocchio-tuned display: BM25+Rocchio (k1=0.82, b=0.68) display-html: BM25+Rocchio (k1=0.82, b=0.68) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --rocchio topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1684 R@1K: 0.8726 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3396 nDCG@10: 0.5275 R@1K: 0.7948 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.3120 nDCG@10: 0.4908 R@1K: 0.8327 - name: distilbert-kd-tasb-pytorch display: "DistilBERT KD TASB: query inference with PyTorch" display-html: "DistilBERT KD TASB: query inference with PyTorch" display-row: "[5]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-tas_b-b256 --topics $topics --encoder sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3444 R@1K: 0.9771 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4590 nDCG@10: 0.7210 R@1K: 0.8406 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4698 nDCG@10: 0.6854 R@1K: 0.8727 - name: distilbert-kd-tasb display: "DistilBERT KD TASB: pre-encoded" display-html: "DistilBERT KD TASB: pre-encoded queries" display-row: "[5]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-tas_b-b256 --topics $topics --encoded-queries distilbert_tas_b-$topics --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3444 R@1K: 0.9771 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4590 nDCG@10: 0.7210 R@1K: 0.8406 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4698 nDCG@10: 0.6854 R@1K: 0.8727 - name: distilbert-kd-pytorch display: "DistilBERT KD: query inference with PyTorch" display-html: "DistilBERT KD: query inference with PyTorch" display-row: "[4]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 --topics $topics --encoder sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3251 R@1K: 0.9553 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4053 nDCG@10: 0.6994 R@1K: 0.7653 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4159 nDCG@10: 0.6447 R@1K: 0.7953 - name: distilbert-kd display: "DistilBERT KD: pre-encoded" display-html: "DistilBERT KD: pre-encoded queries" display-row: "[4]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.distilbert-dot-margin-mse-t2 --topics $topics --encoded-queries distilbert_kd-$topics --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3251 R@1K: 0.9553 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4053 nDCG@10: 0.6994 R@1K: 0.7653 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4159 nDCG@10: 0.6447 R@1K: 0.7953 - name: ance-pytorch display: "ANCE: query inference with PyTorch" display-html: "ANCE: query inference with PyTorch" display-row: "[3]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.ance --topics $topics --encoder castorini/ance-msmarco-passage --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3302 R@1K: 0.9587 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3710 nDCG@10: 0.6452 R@1K: 0.7554 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4076 nDCG@10: 0.6458 R@1K: 0.7764 - name: ance display: "ANCE: pre-encoded" display-html: "ANCE: pre-encoded queries" display-row: "[3]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.ance --topics $topics --encoded-queries ance-$topics --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3302 R@1K: 0.9584 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3710 nDCG@10: 0.6452 R@1K: 0.7554 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4076 nDCG@10: 0.6458 R@1K: 0.7764 - name: bm25-tuned display: BM25 (k1=0.82, b=0.68) display-html: BM25 (k1=0.82, b=0.68) command: python -m pyserini.search.lucene --topics $topics --index msmarco-v1-passage --output $output --bm25 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1875 R@1K: 0.8573 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.2903 nDCG@10: 0.4973 R@1K: 0.7450 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.2876 nDCG@10: 0.4876 R@1K: 0.8031 - name: bm25-rm3-tuned display: BM25+RM3 (k1=0.82, b=0.68) display-html: BM25+RM3 (k1=0.82, b=0.68) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --rm3 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1646 R@1K: 0.8704 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3339 nDCG@10: 0.5147 R@1K: 0.7950 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.3017 nDCG@10: 0.4924 R@1K: 0.8292 - name: bm25-default display: BM25 (k1=0.9, b=0.4) display-html: BM25 (k1=0.9, b=0.4) display-row: "[1] — (1a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1840 R@1K: 0.8526 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3013 nDCG@10: 0.5058 R@1K: 0.7501 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.2856 nDCG@10: 0.4796 R@1K: 0.7863 - name: bm25-rm3-default display: BM25+RM3 (k1=0.9, b=0.4) display-html: BM25+RM3 (k1=0.9, b=0.4) display-row: "[1] — (1b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --rm3 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.1566 R@1K: 0.8606 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.3416 nDCG@10: 0.5216 R@1K: 0.8136 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.3006 nDCG@10: 0.4896 R@1K: 0.8236 - name: bm25-d2q-t5-tuned display: BM25 w/ doc2query-T5 (k1=2.18, b=0.86) display-html: BM25 w/ doc2query-T5 (k1=2.18, b=0.86) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5 --topics $topics --output $output --bm25 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2816 R@1K: 0.9506 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4046 nDCG@10: 0.6336 R@1K: 0.8134 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4171 nDCG@10: 0.6265 R@1K: 0.8393 - name: bm25-d2q-t5-default display: BM25 w/ doc2query-T5 (k1=0.9, b=0.4) display-html: BM25 w/ doc2query-T5 (k1=0.9, b=0.4) display-row: "[1] — (2a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2723 R@1K: 0.9470 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4034 nDCG@10: 0.6417 R@1K: 0.8310 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4074 nDCG@10: 0.6187 R@1K: 0.8452 - name: bm25-rm3-d2q-t5-tuned display: BM25+RM3 w/ doc2query-T5 (k1=2.18, b=0.86) display-html: BM25+RM3 w/ doc2query-T5 (k1=2.18, b=0.86) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2382 R@1K: 0.9528 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4377 nDCG@10: 0.6537 R@1K: 0.8443 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4348 nDCG@10: 0.6235 R@1K: 0.8605 - name: bm25-rm3-d2q-t5-default display: BM25+RM3 w/ doc2query-T5 (k1=0.9, b=0.4) display-html: BM25+RM3 w/ doc2query-T5 (k1=0.9, b=0.4) display-row: "[1] — (2b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.2139 R@1K: 0.9460 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4483 nDCG@10: 0.6586 R@1K: 0.8863 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4286 nDCG@10: 0.6131 R@1K: 0.8700 - name: unicoil-pytorch display: "uniCOIL (w/ doc2query-T5): query inference with PyTorch" display-html: "uniCOIL (w/ doc2query-T5): query inference with PyTorch" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --encoder castorini/unicoil-msmarco-passage --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3509 R@1K: 0.9581 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4617 nDCG@10: 0.7027 R@1K: 0.8291 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4429 nDCG@10: 0.6745 R@1K: 0.8433 - name: unicoil-onnx display: "uniCOIL (w/ doc2query-T5): query inference with ONNX" display-html: "uniCOIL (w/ doc2query-T5): query inference with ONNX" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --onnx-encoder UniCoil --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3509 R@1K: 0.9581 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4617 nDCG@10: 0.7027 R@1K: 0.8291 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4429 nDCG@10: 0.6745 R@1K: 0.8433 - name: unicoil display: "uniCOIL (w/ doc2query-T5): pre-encoded" display-html: "uniCOIL (w/ doc2query-T5): pre-encoded queries" display-row: "[1] — (3b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil --topics $topics --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset-unicoil eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3516 R@1K: 0.9582 - topic_key: dl19-passage-unicoil eval_key: dl19-passage scores: - MAP: 0.4612 nDCG@10: 0.7024 R@1K: 0.8292 - topic_key: dl20-unicoil eval_key: dl20-passage scores: - MAP: 0.4430 nDCG@10: 0.6745 R@1K: 0.8430 - name: unicoil-noexp-pytorch display: "uniCOIL (noexp): query inference with PyTorch" display-html: "uniCOIL (noexp): query inference with PyTorch" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --encoder castorini/unicoil-noexp-msmarco-passage --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3153 R@1K: 0.9239 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4033 nDCG@10: 0.6434 R@1K: 0.7752 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4022 nDCG@10: 0.6524 R@1K: 0.7861 - name: unicoil-noexp-onnx display: "uniCOIL (noexp): query inference with ONNX" display-html: "uniCOIL (noexp): query inference with ONNX" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --onnx-encoder UniCoil --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3119 R@1K: 0.9239 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4061 nDCG@10: 0.6531 R@1K: 0.7809 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.3909 nDCG@10: 0.6388 R@1K: 0.7915 - name: unicoil-noexp display: "uniCOIL (noexp): pre-encoded" display-html: "uniCOIL (noexp): pre-encoded queries" display-row: "[1] — (3a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-unicoil-noexp --topics $topics --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset-unicoil-noexp eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3153 R@1K: 0.9239 - topic_key: dl19-passage-unicoil-noexp eval_key: dl19-passage scores: - MAP: 0.4033 nDCG@10: 0.6433 R@1K: 0.7752 - topic_key: dl20-unicoil-noexp eval_key: dl20-passage scores: - MAP: 0.4021 nDCG@10: 0.6523 R@1K: 0.7861 - name: splade-pp-ed-onnx display: "SPLADE++ EnsembleDistil: query inference with ONNX" display-html: "SPLADE++ EnsembleDistil: query inference with ONNX" display-row: "[2]" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-splade-pp-ed --topics $topics --onnx-encoder SpladePlusPlusEnsembleDistil --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3830 R@1K: 0.9831 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.5054 nDCG@10: 0.7320 R@1K: 0.8724 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.5002 nDCG@10: 0.7198 R@1K: 0.8995 - name: splade-pp-sd-onnx display: "SPLADE++ SelfDistil: query inference with ONNX" display-html: "SPLADE++ SelfDistil: query inference with ONNX" display-row: "[2]" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-passage-splade-pp-sd --topics $topics --onnx-encoder SpladePlusPlusSelfDistil --output $output --hits 1000 --impact topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3778 R@1K: 0.9846 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4997 nDCG@10: 0.7356 R@1K: 0.8758 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.5140 nDCG@10: 0.7285 R@1K: 0.9023 - name: tct_colbert-v2-hnp-pytorch display: "TCT_ColBERT-V2-HN+: query inference with PyTorch" display-html: "TCT_ColBERT-V2-HN+: query inference with PyTorch" display-row: "[6]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.tct_colbert-v2-hnp --topics $topics --encoder castorini/tct_colbert-v2-hnp-msmarco --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3584 R@1K: 0.9695 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4469 nDCG@10: 0.7204 R@1K: 0.8261 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4754 nDCG@10: 0.6882 R@1K: 0.8429 - name: tct_colbert-v2-hnp display: "TCT_ColBERT-V2-HN+: pre-encoded" display-html: "TCT_ColBERT-V2-HN+: pre-encoded queries" display-row: "[6]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.tct_colbert-v2-hnp --topics $topics --encoded-queries tct_colbert-v2-hnp-$topics --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3584 R@1K: 0.9695 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4469 nDCG@10: 0.7204 R@1K: 0.8261 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4754 nDCG@10: 0.6882 R@1K: 0.8429 - name: slimr display: "SLIM: query inference with PyTorch" display-html: "SLIM: query inference with PyTorch" display-row: "[7]" command: python -m pyserini.search.lucene --threads 16 --batch 128 --index msmarco-v1-passage-slimr --topics $topics --encoder castorini/slimr-msmarco-passage --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr --output $output --output-format msmarco --hits 1000 --impact --min-idf 3 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3581 R@1K: 0.9620 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4509 nDCG@10: 0.7010 R@1K: 0.8241 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4419 nDCG@10: 0.6403 R@1K: 0.8543 - name: slimr-pp display: "SLIM++: query inference with PyTorch" display-html: "SLIM++: query inference with PyTorch" display-row: "[7]" command: python -m pyserini.search.lucene --threads 16 --batch 128 --index msmarco-v1-passage-slimr-pp --topics $topics --encoder castorini/slimr-pp-msmarco-passage --encoded-corpus scipy-sparse-vectors.msmarco-v1-passage-slimr-pp --output $output --output-format msmarco --hits 1000 --impact --min-idf 3 topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.4032 R@1K: 0.9680 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4687 nDCG@10: 0.7140 R@1K: 0.8415 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4906 nDCG@10: 0.7021 R@1K: 0.8551 - name: aggretriever-distilbert-pytorch display: "Aggretriever-DistilBERT: query inference with PyTorch" display-html: "Aggretriever-DistilBERT: query inference with PyTorch" display-row: "[8]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.aggretriever-distilbert --topics $topics --encoder castorini/aggretriever-distilbert --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3412 R@1K: 0.9604 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4301 nDCG@10: 0.6816 R@1K: 0.8023 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4329 nDCG@10: 0.6726 R@1K: 0.8351 - name: aggretriever-cocondenser-pytorch display: "Aggretriever-coCondenser: query inference with PyTorch" display-html: "Aggretriever-coCondenser: query inference with PyTorch" display-row: "[8]" command: python -m pyserini.search.faiss --threads 16 --batch-size 512 --index msmarco-v1-passage.aggretriever-cocondenser --topics $topics --encoder castorini/aggretriever-cocondenser --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3619 R@1K: 0.9735 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4350 nDCG@10: 0.6837 R@1K: 0.8078 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4710 nDCG@10: 0.6972 R@1K: 0.8555 - name: openai-ada2 display: "OpenAI ada2: pre-encoded queries" display-html: "OpenAI ada2: pre-encoded queries" command: python -m pyserini.search.faiss --threads 16 --batch-size 128 --index msmarco-v1-passage.openai-ada2 --topics $topics --encoded-queries openai-ada2-$topics --output $output topics: - topic_key: msmarco-passage-dev-subset eval_key: msmarco-passage-dev-subset scores: - MRR@10: 0.3435 R@1K: 0.9858 - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.4788 nDCG@10: 0.7035 R@1K: 0.8629 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4771 nDCG@10: 0.6759 R@1K: 0.8705 - name: openai-ada2-hyde display: "HyDE-OpenAI ada2: pre-encoded queries" display-html: "HyDE-OpenAI ada2: pre-encoded queries" command: python -m pyserini.search.faiss --threads 16 --batch-size 128 --index msmarco-v1-passage.openai-ada2 --topics $topics --encoded-queries openai-ada2-$topics-hyde --output $output topics: - topic_key: dl19-passage eval_key: dl19-passage scores: - MAP: 0.5125 nDCG@10: 0.7163 R@1K: 0.9002 - topic_key: dl20 eval_key: dl20-passage scores: - MAP: 0.4938 nDCG@10: 0.6666 R@1K: 0.8919