|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
from tqdm import tqdm |
|
import numpy as np |
|
import pandas as pd |
|
from pyserini.query_iterator import DefaultQueryIterator |
|
from pyserini.encode import DprQueryEncoder, TctColBertQueryEncoder, AnceQueryEncoder, AutoQueryEncoder |
|
from pyserini.encode import UniCoilQueryEncoder, SpladeQueryEncoder |
|
|
|
|
|
def init_encoder(encoder, device): |
|
if 'dpr' in encoder.lower(): |
|
return DprQueryEncoder(encoder, device=device) |
|
elif 'tct' in encoder.lower(): |
|
return TctColBertQueryEncoder(encoder, device=device) |
|
elif 'ance' in encoder.lower(): |
|
return AnceQueryEncoder(encoder, device=device, tokenizer_name='roberta-base') |
|
elif 'sentence-transformers' in encoder.lower(): |
|
return AutoQueryEncoder(encoder, device=device, pooling='mean', l2_norm=True) |
|
elif 'unicoil' in encoder.lower(): |
|
return UniCoilQueryEncoder(encoder, device=device) |
|
elif 'splade' in encoder.lower(): |
|
return SpladeQueryEncoder(encoder, device=device) |
|
else: |
|
return AutoQueryEncoder(encoder, device=device) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--topics', type=str, |
|
help='path to topics file in tsv format or self-contained topics name', required=True) |
|
parser.add_argument('--encoder', type=str, help='encoder model name or path', required=True) |
|
parser.add_argument('--weight-range', type=int, help='range of weights for sparse embedding', required=False) |
|
parser.add_argument('--quant-range', type=int, help='range of quantization for sparse embedding', required=False) |
|
parser.add_argument('--output', type=str, help='path to stored encoded queries', required=True) |
|
parser.add_argument('--device', type=str, help='device cpu or cuda [cuda:0, cuda:1...]', |
|
default='cpu', required=False) |
|
args = parser.parse_args() |
|
|
|
encoder = init_encoder(args.encoder, device=args.device) |
|
query_iterator = DefaultQueryIterator.from_topics(args.topics) |
|
|
|
is_sparse = False |
|
query_ids = [] |
|
query_texts = [] |
|
query_embeddings = [] |
|
for topic_id, text in tqdm(query_iterator): |
|
embedding = encoder.encode(text) |
|
if isinstance(embedding, dict): |
|
is_sparse = True |
|
pseudo_str = [] |
|
for tok, weight in embedding.items(): |
|
weight_quanted = int(np.round(weight/args.weight_range*args.quant_range)) |
|
pseudo_str += [tok] * weight_quanted |
|
pseudo_str = " ".join(pseudo_str) |
|
embedding = pseudo_str |
|
query_ids.append(topic_id) |
|
query_texts.append(text) |
|
query_embeddings.append(embedding) |
|
if is_sparse: |
|
with open(args.output, 'w') as f: |
|
for i in range(len(query_ids)): |
|
f.write(f"{query_ids[i]}\t{query_embeddings[i]}\n") |
|
else: |
|
embeddings = {'id': query_ids, 'text': query_texts, 'embedding': query_embeddings} |
|
embeddings = pd.DataFrame(embeddings) |
|
embeddings.to_pickle(args.output) |
|
|