File size: 18,826 Bytes
62977bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
This module provides Pyserini's Python search interface to Anserini. The main entry point is the ``LuceneSearcher``
class, which wraps the Java class with the same name in Anserini.
"""
import logging
from typing import Dict, List, Optional, Union
from pyserini.fusion import FusionMethod, reciprocal_rank_fusion
from pyserini.index import Document, IndexReader
from pyserini.pyclass import autoclass, JFloat, JArrayList, JHashMap
from pyserini.search import JQuery, JQueryGenerator
from pyserini.trectools import TrecRun
from pyserini.util import download_prebuilt_index, get_sparse_indexes_info
logger = logging.getLogger(__name__)
# Wrappers around Anserini classes
JLuceneSearcher = autoclass('io.anserini.search.SimpleSearcher')
JLuceneSearcherResult = autoclass('io.anserini.search.SimpleSearcher$Result')
class LuceneSearcher:
"""Wrapper class for ``SimpleSearcher`` in Anserini.
Parameters
----------
index_dir : str
Path to Lucene index directory.
"""
def __init__(self, index_dir: str, prebuilt_index_name=None):
self.index_dir = index_dir
self.object = JLuceneSearcher(index_dir)
self.num_docs = self.object.get_total_num_docs()
# Keep track if self is a known pre-built index.
self.prebuilt_index_name = prebuilt_index_name
@classmethod
def from_prebuilt_index(cls, prebuilt_index_name: str, verbose=False):
"""Build a searcher from a pre-built index; download the index if necessary.
Parameters
----------
prebuilt_index_name : str
Prebuilt index name.
verbose : bool
Print status information.
Returns
-------
LuceneSearcher
Searcher built from the prebuilt index.
"""
if verbose:
print(f'Attempting to initialize pre-built index {prebuilt_index_name}.')
try:
index_dir = download_prebuilt_index(prebuilt_index_name, verbose=verbose)
except ValueError as e:
print(str(e))
return None
# Currently, the only way to validate stats is to create a separate IndexReader, because there is no method
# to obtain the underlying reader of a SimpleSearcher; see https://github.com/castorini/anserini/issues/2013
index_reader = IndexReader(index_dir)
# This is janky as we're created a separate IndexReader for the sole purpose of validating index stats.
index_reader.validate(prebuilt_index_name, verbose=verbose)
if verbose:
print(f'Initializing {prebuilt_index_name}...')
return cls(index_dir, prebuilt_index_name=prebuilt_index_name)
@staticmethod
def list_prebuilt_indexes():
"""Display information about available prebuilt indexes."""
get_sparse_indexes_info()
def search(self, q: Union[str, JQuery], k: int = 10, query_generator: JQueryGenerator = None,
fields=dict(), strip_segment_id=False, remove_dups=False) -> List[JLuceneSearcherResult]:
"""Search the collection.
Parameters
----------
q : Union[str, JQuery]
Query string or the ``JQuery`` objected.
k : int
Number of hits to return.
query_generator : JQueryGenerator
Generator to build queries. Set to ``None`` by default to use Anserini default.
fields : dict
Optional map of fields to search with associated boosts.
strip_segment_id : bool
Remove the .XXXXX suffix used to denote different segments from an document.
remove_dups : bool
Remove duplicate docids when writing final run output.
Returns
-------
List[JLuceneSearcherResult]
List of search results.
"""
jfields = JHashMap()
for (field, boost) in fields.items():
jfields.put(field, JFloat(boost))
hits = None
if query_generator:
if not fields:
hits = self.object.search(query_generator, q, k)
else:
hits = self.object.searchFields(query_generator, q, jfields, k)
elif isinstance(q, JQuery):
# Note that RM3 requires the notion of a query (string) to estimate the appropriate models. If we're just
# given a Lucene query, it's unclear what the "query" is for this estimation. One possibility is to extract
# all the query terms from the Lucene query, although this might yield unexpected behavior from the user's
# perspective. Until we think through what exactly is the "right thing to do", we'll raise an exception
# here explicitly.
if self.is_using_rm3():
raise NotImplementedError('RM3 incompatible with search using a Lucene query.')
if fields:
raise NotImplementedError('Cannot specify fields to search when using a Lucene query.')
hits = self.object.search(q, k)
else:
if not fields:
hits = self.object.search(q, k)
else:
hits = self.object.search_fields(q, jfields, k)
docids = set()
filtered_hits = []
for hit in hits:
if strip_segment_id is True:
hit.docid = hit.docid.split('.')[0]
if hit.docid in docids:
continue
filtered_hits.append(hit)
if remove_dups is True:
docids.add(hit.docid)
return filtered_hits
def batch_search(self, queries: List[str], qids: List[str], k: int = 10, threads: int = 1,
query_generator: JQueryGenerator = None, fields = dict()) -> Dict[str, List[JLuceneSearcherResult]]:
"""Search the collection concurrently for multiple queries, using multiple threads.
Parameters
----------
queries : List[str]
List of query strings.
qids : List[str]
List of corresponding query ids.
k : int
Number of hits to return.
threads : int
Maximum number of threads to use.
query_generator : JQueryGenerator
Generator to build queries. Set to ``None`` by default to use Anserini default.
fields : dict
Optional map of fields to search with associated boosts.
Returns
-------
Dict[str, List[JLuceneSearcherResult]]
Dictionary holding the search results, with the query ids as keys and the corresponding lists of search
results as the values.
"""
query_strings = JArrayList()
qid_strings = JArrayList()
for query in queries:
query_strings.add(query)
for qid in qids:
qid_strings.add(qid)
jfields = JHashMap()
for (field, boost) in fields.items():
jfields.put(field, JFloat(boost))
if query_generator:
if not fields:
results = self.object.batch_search(query_generator, query_strings, qid_strings, int(k), int(threads))
else:
results = self.object.batch_search_fields(query_generator, query_strings, qid_strings, int(k), int(threads), jfields)
else:
if not fields:
results = self.object.batch_search(query_strings, qid_strings, int(k), int(threads))
else:
results = self.object.batch_search_fields(query_strings, qid_strings, int(k), int(threads), jfields)
return {r.getKey(): r.getValue() for r in results.entrySet().toArray()}
def get_feedback_terms(self, q: str) -> Dict[str, float]:
"""Returns feedback terms and their weights.
Parameters
----------
q : str
Query string or the ``JQuery`` objected.
Returns
-------
Dict[str, float]
Feedback terms and their weights.
"""
terms_map = self.object.get_feedback_terms(q)
if terms_map:
return {r.getKey(): r.getValue() for r in terms_map.entrySet().toArray()}
else:
return None
def set_analyzer(self, analyzer):
"""Set the Java ``Analyzer`` to use.
Parameters
----------
analyzer : JAnalyzer
Java ``Analyzer`` object.
"""
self.object.set_analyzer(analyzer)
def set_language(self, language):
"""Set language of LuceneSearcher"""
self.object.set_language(language)
def set_rm3(self, fb_terms=10, fb_docs=10, original_query_weight=float(0.5), debug=False, filter_terms=True):
"""Configure RM3 pseudo-relevance feedback.
Parameters
----------
fb_terms : int
RM3 parameter for number of expansion terms.
fb_docs : int
RM3 parameter for number of expansion documents.
original_query_weight : float
RM3 parameter for weight to assign to the original query.
debug : bool
Print the original and expanded queries as debug output.
filter_terms: bool
Whether to remove non-English terms.
"""
if self.object.reader.getTermVectors(0):
self.object.set_rm3(None, fb_terms, fb_docs, original_query_weight, debug, filter_terms)
elif self.prebuilt_index_name in ['msmarco-v1-passage', 'msmarco-v1-doc', 'msmarco-v1-doc-segmented']:
self.object.set_rm3('JsonCollection', fb_terms, fb_docs, original_query_weight, debug, filter_terms)
elif self.prebuilt_index_name in ['msmarco-v2-passage', 'msmarco-v2-passage-augmented']:
self.object.set_rm3('MsMarcoV2PassageCollection', fb_terms, fb_docs, original_query_weight, debug, filter_terms)
elif self.prebuilt_index_name in ['msmarco-v2-doc', 'msmarco-v2-doc-segmented']:
self.object.set_rm3('MsMarcoV2DocCollection', fb_terms, fb_docs, original_query_weight, debug, filter_terms)
else:
raise TypeError("RM3 is not supported for indexes without document vectors.")
def unset_rm3(self):
"""Disable RM3 pseudo-relevance feedback."""
self.object.unset_rm3()
def is_using_rm3(self) -> bool:
"""Check if RM3 pseudo-relevance feedback is being performed."""
return self.object.use_rm3()
def set_rocchio(self, top_fb_terms=10, top_fb_docs=10, bottom_fb_terms=10, bottom_fb_docs=10,
alpha=1, beta=0.75, gamma=0, debug=False, use_negative=False):
"""Configure Rocchio pseudo-relevance feedback.
Parameters
----------
top_fb_terms : int
Rocchio parameter for number of relevant expansion terms.
top_fb_docs : int
Rocchio parameter for number of relevant expansion documents.
bottom_fb_terms : int
Rocchio parameter for number of non-relevant expansion terms.
bottom_fb_docs : int
Rocchio parameter for number of non-relevant expansion documents.
alpha : float
Rocchio parameter for weight to assign to the original query.
beta: float
Rocchio parameter for weight to assign to the relevant document vector.
gamma: float
Rocchio parameter for weight to assign to the nonrelevant document vector.
debug : bool
Print the original and expanded queries as debug output.
use_negative : bool
Rocchio parameter to use negative labels.
"""
if self.object.reader.getTermVectors(0):
self.object.set_rocchio(None, top_fb_terms, top_fb_docs, bottom_fb_terms, bottom_fb_docs,
alpha, beta, gamma, debug, use_negative)
elif self.prebuilt_index_name in ['msmarco-v1-passage', 'msmarco-v1-doc', 'msmarco-v1-doc-segmented']:
self.object.set_rocchio('JsonCollection', top_fb_terms, top_fb_docs, bottom_fb_terms, bottom_fb_docs,
alpha, beta, gamma, debug, use_negative)
# Note, we don't have any Pyserini 2CRs that use Rocchio for MS MARCO v2, so there's currently no
# corresponding code branch here. To avoid introducing bugs (without 2CR tests), we'll add when it's needed.
else:
raise TypeError("Rocchio is not supported for indexes without document vectors.")
def unset_rocchio(self):
"""Disable Rocchio pseudo-relevance feedback."""
self.object.unset_rocchio()
def is_using_rocchio(self) -> bool:
"""Check if Rocchio pseudo-relevance feedback is being performed."""
return self.object.use_rocchio()
def set_qld(self, mu=float(1000)):
"""Configure query likelihood with Dirichlet smoothing as the scoring function.
Parameters
----------
mu : float
Dirichlet smoothing parameter mu.
"""
self.object.set_qld(float(mu))
def set_bm25(self, k1=float(0.9), b=float(0.4)):
"""Configure BM25 as the scoring function.
Parameters
----------
k1 : float
BM25 k1 parameter.
b : float
BM25 b parameter.
"""
self.object.set_bm25(float(k1), float(b))
def get_similarity(self):
"""Return the Lucene ``Similarity`` used as the scoring function."""
return self.object.get_similarity()
def doc(self, docid: Union[str, int]) -> Optional[Document]:
"""Return the :class:`Document` corresponding to ``docid``. The ``docid`` is overloaded: if it is of type
``str``, it is treated as an external collection ``docid``; if it is of type ``int``, it is treated as an
internal Lucene ``docid``. Method returns ``None`` if the ``docid`` does not exist in the index.
Parameters
----------
docid : Union[str, int]
Overloaded ``docid``: either an external collection ``docid`` (``str``) or an internal Lucene ``docid``
(``int``).
Returns
-------
Document
:class:`Document` corresponding to the ``docid``.
"""
lucene_document = self.object.doc(docid)
if lucene_document is None:
return None
return Document(lucene_document)
def batch_doc(self, docids: List[str], threads: int) -> Dict[str, Document]:
"""Concurrently fetching documents for multiple document ids.
Return dictionary that maps ``docid`` to :class:`Document`. Returned dictionary does not
contain ``docid`` if a corresponding :class:`Document` does not exist in the index.
Parameters
----------
docids : List[str]
An external collection ``docid`` (``str``).
threads : int
Maximum number of threads to use.
Returns
-------
Dict[str, Document]
Dictionary mapping the ``docid`` to the corresponding :class:`Document`.
"""
docid_strings = JArrayList()
for docid in docids:
docid_strings.add(docid)
results = self.object.batch_get_docs(docid_strings, threads)
batch_document = {r.getKey(): Document(r.getValue())
for r in results.entrySet().toArray()}
return batch_document
def doc_by_field(self, field: str, q: str) -> Optional[Document]:
"""Return the :class:`Document` based on a ``field`` with ``id``. For example, this method can be used to fetch
document based on alternative primary keys that have been indexed, such as an article's DOI. Method returns
``None`` if no such document exists.
Parameters
----------
field : str
Field to look up.
q : str
Unique id of document.
Returns
-------
Document
:class:`Document` whose ``field`` is ``id``.
"""
lucene_document = self.object.doc_by_field(field, q)
if lucene_document is None:
return None
return Document(lucene_document)
def close(self):
"""Close the searcher."""
self.object.close()
class LuceneSimilarities:
@staticmethod
def bm25(k1=0.9, b=0.4):
return autoclass('org.apache.lucene.search.similarities.BM25Similarity')(k1, b)
@staticmethod
def qld(mu=1000):
return autoclass('org.apache.lucene.search.similarities.LMDirichletSimilarity')(mu)
class LuceneFusionSearcher:
def __init__(self, index_dirs: List[str], method: FusionMethod):
self.method = method
self.searchers = [LuceneSearcher(index_dir) for index_dir in index_dirs]
def get_searchers(self) -> List[LuceneSearcher]:
return self.searchers
def search(self, q: Union[str, JQuery], k: int = 10, query_generator: JQueryGenerator = None, strip_segment_id=False, remove_dups=False) -> List[JLuceneSearcherResult]:
trec_runs, docid_to_search_result = list(), dict()
for searcher in self.searchers:
docid_score_pair = list()
hits = searcher.search(q, k=k, query_generator=query_generator,
strip_segment_id=strip_segment_id, remove_dups=remove_dups)
for hit in hits:
docid_to_search_result[hit.docid] = hit
docid_score_pair.append((hit.docid, hit.score))
run = TrecRun.from_search_results(docid_score_pair)
trec_runs.append(run)
if self.method == FusionMethod.RRF:
fused_run = reciprocal_rank_fusion(trec_runs, rrf_k=60, depth=1000, k=1000)
else:
raise NotImplementedError()
return self.convert_to_search_result(fused_run, docid_to_search_result)
@staticmethod
def convert_to_search_result(run: TrecRun, docid_to_search_result: Dict[str, JLuceneSearcherResult]) -> List[JLuceneSearcherResult]:
search_results = []
for _, _, docid, _, score, _ in run.to_numpy():
search_result = docid_to_search_result[docid]
search_result.score = score
search_results.append(search_result)
return search_results
|