File size: 2,795 Bytes
6b07f33 ee5988c 6b07f33 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c 90d7fd0 ee5988c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import pandas as pd
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image, ImageDraw
import torch
from transformers import DetrImageProcessor, DetrForObjectDetection
#image_processor = AutoImageProcessor.from_pretrained('hustvl/yolos-small')
#model = AutoModelForObjectDetection.from_pretrained('hustvl/yolos-small')
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
colors = ["red",
"orange",
"yellow",
"green",
"blue",
"indigo",
"violet",
"brown",
"black",
"slategray",
]
# Resized image width
WIDTH = 900
def detect(image):
print(image)
width, height = image.size
ratio = float(WIDTH) / float(width)
new_h = height * ratio
image = image.resize((int(WIDTH), int(new_h)), Image.Resampling.LANCZOS)
inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs to COCO API
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs,threshold=0.9, target_sizes=target_sizes)[0]
draw = ImageDraw.Draw(image)
# label and the count
counts = {}
for score, label in zip(results["scores"], results["labels"]):
label_name = model.config.id2label[label.item()]
if label_name not in counts:
counts[label_name] = 0
counts[label_name] += 1
count_results = {k: v for k, v in (sorted(counts.items(), key=lambda item: item[1], reverse=True)[:10])}
label2color = {}
for idx, label in enumerate(count_results):
label2color[label] = colors[idx]
for label, box in zip(results["labels"], results["boxes"]):
label_name = model.config.id2label[label.item()]
if label_name in count_results:
box = [round(i, 4) for i in box.tolist()]
x1, y1, x2, y2 = tuple(box)
draw.rectangle((x1, y1, x2, y2), outline=label2color[label_name], width=2)
draw.text((x1, y1), label_name, fill="white")
df = pd.DataFrame({
'label': [label for label in count_results],
'counts': [counts[label] for label in count_results]
})
return image, df, count_results
demo = gr.Interface(
fn=detect,
inputs=[gr.Image(label="Input image", type="pil")],
outputs=[gr.Image(label="Output image"), gr.BarPlot(show_label=False, x="label", y="counts", x_title="Labels", y_title="Counts", vertical=False), gr.Textbox(show_label=False)],
title="FB Object Detection",
cache_examples=False
)
demo.launch() |