import argparse import gradio as gr import os import torch from donut import DonutModel from PIL import Image def demo_process_vqa(input_img, question): global pretrained_model, task_prompt, task_name input_img = Image.fromarray(input_img) user_prompt = task_prompt.replace("{user_input}", question) return pretrained_model.inference(input_img, prompt=user_prompt)["predictions"][0] def demo_process(input_img): global pretrained_model, task_prompt, task_name input_img = Image.fromarray(input_img) best_output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0] return best_output["text_sequence"].split(" ")[0] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="s_passport") parser.add_argument("--pretrained_path", type=str, default=os.getcwd()) parser.add_argument("--port", type=int, default=12345) parser.add_argument("--url", type=str, default="0.0.0.0") parser.add_argument("--sample_img_path", type=str) args, left_argv = parser.parse_known_args() task_name = args.task if "docvqa" == task_name: task_prompt = "{user_input}" else: # rvlcdip, cord, ... task_prompt = f"" example_sample = [os.path.join("images", image) for image in os.listdir("images")] if args.sample_img_path: example_sample.append(args.sample_img_path) pretrained_model = DonutModel.from_pretrained(args.pretrained_path) if torch.cuda.is_available(): pretrained_model.half() device = torch.device("cuda") pretrained_model.to(device) pretrained_model.eval() gr.Interface( fn=demo_process_vqa if task_name == "docvqa" else demo_process, inputs=["image", "text"] if task_name == "docvqa" else "image", outputs="text", title="Demo of MRZ Extraction model based on 🍩 architecture", examples=example_sample if example_sample else None ).launch()