DocQA / donut_inference.py
likhithv's picture
new rag approach
c523dd3
import torch, re
from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel
# image_path = '/app/Datasplit/test/1099_Div/filled_form_43.jpg'
# image = Image.open(image_path)
# imgae = image.resize((1864, 1440))
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the processor from the local directory
processor = DonutProcessor.from_pretrained("Model")
# Load the model from the local directory
model = VisionEncoderDecoderModel.from_pretrained("Model")
model.to(device)
def inference(image):
pixel_values = processor(image, return_tensors="pt").pixel_values
task_prompt = "<s>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
outputs = model.generate(pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
# print(processor.token2json(sequence))
return processor.token2json(sequence)
# data = inference(image)
# print(data)