|
import torch, re |
|
from PIL import Image |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
import streamlit as st |
|
from dotenv import load_dotenv |
|
import os |
|
import time |
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
processor = DonutProcessor.from_pretrained("Henge-navuuu/donut-base-finetuned-forms-v1") |
|
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("Henge-navuuu/donut-base-finetuned-forms-v1") |
|
model.to(device) |
|
|
|
@st.cache_resource |
|
def inference(image): |
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
task_prompt = "<s>" |
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt")["input_ids"] |
|
|
|
|
|
|
|
start_time = time.time() |
|
outputs = model.generate(pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
early_stopping=True, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
num_beams=2, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
output_scores=True,) |
|
end_time = time.time() |
|
sequence = processor.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
print(processor.token2json(sequence)) |
|
print(f"Donut Inference time {end_time-start_time}") |
|
return processor.token2json(sequence) |
|
|
|
|
|
|