|
import math
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
from huggingface_hub import snapshot_download
|
|
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
SequenceClassifierOutputWithPast,
|
|
TokenClassifierOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers import Phi3Config, Phi3Model
|
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class Phi3Transformer(Phi3Model):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
|
We only modified the attention mask
|
|
Args:
|
|
config: Phi3Config
|
|
"""
|
|
def prefetch_layer(self, layer_idx: int, device: torch.device):
|
|
"Starts prefetching the next layer cache"
|
|
with torch.cuda.stream(self.prefetch_stream):
|
|
|
|
for name, param in self.layers[layer_idx].named_parameters():
|
|
param.data = param.data.to(device, non_blocking=True)
|
|
|
|
def evict_previous_layer(self, layer_idx: int):
|
|
"Moves the previous layer cache to the CPU"
|
|
prev_layer_idx = layer_idx - 1
|
|
for name, param in self.layers[prev_layer_idx].named_parameters():
|
|
param.data = param.data.to("cpu", non_blocking=True)
|
|
|
|
def get_offlaod_layer(self, layer_idx: int, device: torch.device):
|
|
|
|
if not hasattr(self, "prefetch_stream"):
|
|
self.prefetch_stream = torch.cuda.Stream()
|
|
|
|
|
|
torch.cuda.current_stream().synchronize()
|
|
self.evict_previous_layer(layer_idx)
|
|
|
|
|
|
torch.cuda.synchronize(self.prefetch_stream)
|
|
|
|
|
|
self.prefetch_layer((layer_idx + 1) % len(self.layers), device)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
offload_model: Optional[bool] = False,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
|
|
return_legacy_cache = False
|
|
if use_cache and not isinstance(past_key_values, Cache):
|
|
return_legacy_cache = True
|
|
if past_key_values is None:
|
|
past_key_values = DynamicCache()
|
|
else:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
logger.warning_once(
|
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.dim() == 3:
|
|
dtype = inputs_embeds.dtype
|
|
min_dtype = torch.finfo(dtype).min
|
|
attention_mask = (1 - attention_mask) * min_dtype
|
|
attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype)
|
|
else:
|
|
raise
|
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
layer_idx = -1
|
|
for decoder_layer in self.layers:
|
|
layer_idx += 1
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
)
|
|
else:
|
|
if offload_model and not self.training:
|
|
self.get_offlaod_layer(layer_idx, device=inputs_embeds.device)
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
if output_hidden_states:
|
|
print('************')
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
if return_legacy_cache:
|
|
next_cache = next_cache.to_legacy_cache()
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|