import gradio as gr import torch import pandas as pd from datasets import Dataset, load_dataset from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model from transformers import (AutoTokenizer, BitsAndBytesConfig, TrainingArguments, AutoModelForSequenceClassification, Trainer, EarlyStoppingCallback, DataCollatorWithPadding) import bitsandbytes as bnb import evaluate import numpy as np import random def process(model, dataset): dataset_imdb = load_dataset(dataset) return "Done" demo = gr.Interface(fn=process, inputs=["model", "dataset"], outputs="text") demo.launch()