import gradio as gr import os, torch from datasets import load_dataset from huggingface_hub import HfApi, login from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Run on NVidia A10G Large (sleep after 1 hour) # Model IDs: # # meta-llama/Meta-Llama-3-8B-Instruct # Datasets: # # gretelai/synthetic_text_to_sql profile = "bstraehle" action_1 = "Fine-tune pre-trained model" action_2 = "Prompt fine-tuned model" system_prompt = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}" user_prompt = "What is the total trade value and average price for each trader and stock in the trade_history table?" schema = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);" base_model_id = "meta-llama/Meta-Llama-3-8B-Instruct" fine_tuned_model_id = "bstraehle/Meta-Llama-3-8B-Instruct" dataset = "gretelai/synthetic_text_to_sql" def prompt_model(model_id, system_prompt, user_prompt, schema): pipe = pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto") messages = [ {"role": "system", "content": system_prompt.format(schema=schema)}, {"role": "user", "content": user_prompt}, {"role": "assistant", "content": ""} ] output = pipe(messages) return output[0]["generated_text"][-1]["content"] def fine_tune_model(model_id): tokenizer = download_model(model_id) model_repo_name = upload_model(model_id, tokenizer) return model_repo_name def download_model(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) model.save_pretrained(model_id) return tokenizer #def download_dataset(dataset): # ds = load_dataset(dataset) # return "" def upload_model(model_id, tokenizer): model_name = model_id[model_id.rfind('/')+1:] model_repo_name = f"{profile}/{model_name}" login(token=os.environ["HF_TOKEN"]) api = HfApi() api.create_repo(repo_id=model_repo_name) api.upload_folder( folder_path=model_id, repo_id=model_repo_name ) tokenizer.push_to_hub(model_repo_name) return model_repo_name def process(action, system_prompt, user_prompt, schema, base_model_id, dataset): if action == action_1: result = fine_tune_model(base_model_id) elif action == action_2: model_id = base_model_id[base_model_id.rfind('/')+1:] fine_tuned_model_id = f"{profile}/{model_id}" result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema) return result demo = gr.Interface(fn=process, inputs=[gr.Radio([action_1, action_2, action_3], label = "Action", value = action_1), gr.Textbox(label = "System Prompt", value = system_prompt, lines = 2), gr.Textbox(label = "User Prompt", value = user_prompt, lines = 2), gr.Textbox(label = "Schema", value = schema, lines = 2), gr.Textbox(label = "Base Model ID", value = base_model_id, lines = 1), gr.Textbox(label = "Dataset", value = dataset, lines = 1)], outputs=[gr.Textbox(label = "Completion")]) demo.launch()