import gradio as gr import os, torch from datasets import load_dataset from huggingface_hub import HfApi, login from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline ACTION_1 = "Prompt base model" ACTION_2 = "Fine-tune base model" ACTION_3 = "Prompt fine-tuned model" SYSTEM_PROMPT = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SQL_CONTEXT. Do not generate any additional text. SQL_CONTEXT: {sql_context}" USER_PROMPT = "How many new users joined from countries with stricter data privacy laws than the United States in the past month?" SQL_CONTEXT = "CREATE TABLE users (user_id INT, country VARCHAR(50), joined_date DATE); CREATE TABLE data_privacy_laws (country VARCHAR(50), privacy_level INT); INSERT INTO users (user_id, country, joined_date) VALUES (1, 'USA', '2023-02-15'), (2, 'Germany', '2023-02-27'); INSERT INTO data_privacy_laws (country, privacy_level) VALUES ('USA', 5), ('Germany', 8);" BASE_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct" FT_MODEL_NAME = "bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql" DATASET_NAME = "gretelai/synthetic_text_to_sql" def process(action, base_model_name, ft_model_name, dataset_name, system_prompt, user_prompt, sql_context): #raise gr.Error("Please clone and bring your own credentials.") if action == ACTION_1: result = prompt_model(base_model_name, system_prompt, user_prompt, sql_context) elif action == ACTION_2: result = fine_tune_model(base_model_name, dataset_name) elif action == ACTION_3: result = prompt_model(ft_model_name, system_prompt, user_prompt, sql_context) return result def fine_tune_model(base_model_name, dataset_name): # Load dataset dataset = load_dataset(dataset_name) print("### Dataset") print(dataset) print("### Example") print(dataset["train"][:1]) print("###") # Load model model, tokenizer = load_model(base_model_name) print("### Model") print(model) print("### Tokenizer") print(tokenizer) print("###") # Pre-process dataset def preprocess(examples): model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True) return model_inputs dataset = dataset.map(preprocess, batched=True) print("### Pre-processed dataset") print(dataset) print("### Example") print(dataset["train"][:1]) print("###") # Split dataset into training and validation sets #train_dataset = dataset["train"] #test_dataset = dataset["test"] train_dataset = dataset["train"].shuffle(seed=42).select(range(1000)) test_dataset = dataset["test"].shuffle(seed=42).select(range(100)) print("### Training dataset") print(train_dataset) print("### Validation dataset") print(test_dataset) print("###") # Configure training arguments training_args = Seq2SeqTrainingArguments( output_dir="./output", logging_dir="./logging", num_train_epochs=1, max_steps=1, # overwrites num_train_epochs #push_to_hub=True, #per_device_train_batch_size=16, #per_device_eval_batch_size=64, #eval_strategy="steps", #save_total_limit=2, #save_steps=500, #eval_steps=500, #warmup_steps=500, #weight_decay=0.01, #metric_for_best_model="accuracy", #greater_is_better=True, #load_best_model_at_end=True, #save_on_each_node=True, ) print("### Training arguments") print(training_args) print("###") # Create trainer #trainer = Seq2SeqTrainer( # model=model, # args=training_args, # train_dataset=train_dataset, # eval_dataset=test_dataset, # #compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))}, #) # Train model #trainer.train() # Save model and tokenizer to HF login(token=os.environ["HF_TOKEN"]) api = HfApi() api.create_repo(repo_id=FT_MODEL_NAME) #api.upload_folder( # folder_path="./output", # repo_id="Meta-Llama-3.1-8B-Instruct-text-to-sql" #) tokenizer.push_to_hub(FT_MODEL_NAME) def prompt_model(model_name, system_prompt, user_prompt, sql_context): pipe = pipeline("text-generation", model=model_name, device_map="auto", max_new_tokens=1000) messages = [ {"role": "system", "content": system_prompt.format(sql_context=sql_context)}, {"role": "user", "content": user_prompt}, {"role": "assistant", "content": ""} ] output = pipe(messages) result = output[0]["generated_text"][-1]["content"] print("###") print(result) print("###") return result def load_model(model_name): model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token return model, tokenizer demo = gr.Interface(fn=process, inputs=[gr.Radio([ACTION_1, ACTION_2, ACTION_3], label = "Action", value = ACTION_3), gr.Textbox(label = "Base Model Name", value = BASE_MODEL_NAME, lines = 1), gr.Textbox(label = "Fine-Tuned Model Name", value = FT_MODEL_NAME, lines = 1), gr.Textbox(label = "Dataset Name", value = DATASET_NAME, lines = 1), gr.Textbox(label = "System Prompt", value = SYSTEM_PROMPT, lines = 2), gr.Textbox(label = "User Prompt", value = USER_PROMPT, lines = 2), gr.Textbox(label = "SQL Context", value = SQL_CONTEXT, lines = 4)], outputs=[gr.Textbox(label = "Prompt Completion", value = os.environ["OUTPUT"])]) demo.launch()