import gradio as gr import os from huggingface_hub import HfApi, login from transformers import AutoTokenizer, AutoModelForCausalLM def process(model_id, dataset): print("111") # Download Sample Model from Hugging Face to Publish Again tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Local Path of Model print("222") model_path = model_id model.save_pretrained(model_path) login(token=os.environ["HF_TOKEN"]) api = HfApi() model_repo_name = "bstraehle/Meta-Llama-3-8B-Instruct" #Create Repo in Hugging Face print("333") api.create_repo(repo_id=model_repo_name) #Upload Model folder from Local to HuggingFace print("444") api.upload_folder( folder_path=model_path, repo_id=model_repo_name ) # Publish Model Tokenizer on Hugging Face print("555") tokenizer.push_to_hub(model_repo_name) return "Done" demo = gr.Interface(fn=process, inputs=[gr.Textbox(label = "Model ID", value = "meta-llama/Meta-Llama-3-8B-Instruct", lines = 1), gr.Textbox(label = "Dataset", value = "imdb", lines = 1)], outputs=[gr.Textbox(label = "Completion")]) demo.launch()