Update app.py
Browse files
app.py
CHANGED
@@ -3,34 +3,36 @@ import os
|
|
3 |
from huggingface_hub import HfApi, login
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
login(token=os.environ["HF_TOKEN"])
|
16 |
api = HfApi()
|
17 |
-
model_repo_name = "bstraehle/Meta-Llama-3-8B-Instruct"
|
18 |
-
|
19 |
-
#Create Repo in Hugging Face
|
20 |
-
print("333")
|
21 |
api.create_repo(repo_id=model_repo_name)
|
22 |
-
|
23 |
-
#Upload Model folder from Local to HuggingFace
|
24 |
-
print("444")
|
25 |
api.upload_folder(
|
26 |
folder_path=model_path,
|
27 |
repo_id=model_repo_name
|
28 |
)
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Publish Model Tokenizer on Hugging Face
|
31 |
-
print("555")
|
32 |
-
tokenizer.push_to_hub(model_repo_name)
|
33 |
-
|
34 |
return "Done"
|
35 |
|
36 |
demo = gr.Interface(fn=process,
|
|
|
3 |
from huggingface_hub import HfApi, login
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
# NVidia A10G Large
|
7 |
+
|
8 |
+
# google/gemma-2-9b-it
|
9 |
+
# meta-llama/Meta-Llama-3-8B-Instruct
|
10 |
+
|
11 |
+
profile = "bstraehle"
|
12 |
+
|
13 |
+
def download_tokenizer_and_model(model_id)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
15 |
model = AutoModelForCausalLM.from_pretrained(model_id)
|
16 |
+
model.save_pretrained(model_id)
|
17 |
+
return tokenizer, model
|
18 |
+
|
19 |
+
def upload_model(tokenizer, model)
|
20 |
+
model_name = model_id[model_id.rfind('/')+1:]
|
21 |
+
print(model_name)
|
22 |
+
model_repo_name = f"{profile}/{model_name}"
|
23 |
login(token=os.environ["HF_TOKEN"])
|
24 |
api = HfApi()
|
|
|
|
|
|
|
|
|
25 |
api.create_repo(repo_id=model_repo_name)
|
|
|
|
|
|
|
26 |
api.upload_folder(
|
27 |
folder_path=model_path,
|
28 |
repo_id=model_repo_name
|
29 |
)
|
30 |
+
tokenizer.push_to_hub(model_repo_name)
|
31 |
+
|
32 |
+
def process(model_id, dataset):
|
33 |
+
tokenizer, model = download_model(model_id)
|
34 |
+
upload_model(tokenizer, model)
|
35 |
|
|
|
|
|
|
|
|
|
36 |
return "Done"
|
37 |
|
38 |
demo = gr.Interface(fn=process,
|