Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import gradio as gr
|
|
4 |
import os, torch
|
5 |
from datasets import load_dataset
|
6 |
from huggingface_hub import HfApi, login
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
|
8 |
|
9 |
ACTION_1 = "Prompt base model"
|
@@ -80,8 +81,8 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
80 |
|
81 |
training_args = Seq2SeqTrainingArguments(
|
82 |
output_dir=f"./{FT_MODEL_NAME}",
|
83 |
-
num_train_epochs=3,
|
84 |
-
|
85 |
push_to_hub=True, # only pushes model, also need to push tokenizer (see below)
|
86 |
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments
|
87 |
)
|
@@ -89,6 +90,14 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
89 |
print("### Training arguments")
|
90 |
print(training_args)
|
91 |
print("###")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Create trainer
|
94 |
|
@@ -97,6 +106,7 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
97 |
args=training_args,
|
98 |
train_dataset=train_dataset,
|
99 |
eval_dataset=eval_dataset,
|
|
|
100 |
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer
|
101 |
)
|
102 |
|
|
|
4 |
import os, torch
|
5 |
from datasets import load_dataset
|
6 |
from huggingface_hub import HfApi, login
|
7 |
+
from peft import LoraConfig
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
|
9 |
|
10 |
ACTION_1 = "Prompt base model"
|
|
|
81 |
|
82 |
training_args = Seq2SeqTrainingArguments(
|
83 |
output_dir=f"./{FT_MODEL_NAME}",
|
84 |
+
num_train_epochs=3, # 37,500 steps
|
85 |
+
max_steps=1, # overwrites num_train_epochs
|
86 |
push_to_hub=True, # only pushes model, also need to push tokenizer (see below)
|
87 |
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainingArguments
|
88 |
)
|
|
|
90 |
print("### Training arguments")
|
91 |
print(training_args)
|
92 |
print("###")
|
93 |
+
|
94 |
+
# PEFT
|
95 |
+
|
96 |
+
peft_config = LoraConfig(
|
97 |
+
r=8,
|
98 |
+
bias="none",
|
99 |
+
task_type="CAUSAL_LM",
|
100 |
+
)
|
101 |
|
102 |
# Create trainer
|
103 |
|
|
|
106 |
args=training_args,
|
107 |
train_dataset=train_dataset,
|
108 |
eval_dataset=eval_dataset,
|
109 |
+
peft_config=peft_config,
|
110 |
# TODO https://huggingface.co/docs/transformers/main_classes/trainer#transformers.Seq2SeqTrainer
|
111 |
)
|
112 |
|