sft / app.py
bstraehle's picture
Update app.py
cda682a verified
raw
history blame
5.34 kB
import gradio as gr
import os, torch
from datasets import load_dataset
from huggingface_hub import HfApi, login
from transformers import AutoModelForCausalLM, AutoTokenizer, Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline
ACTION_1 = "Prompt base model"
ACTION_2 = "Fine-tune base model"
ACTION_3 = "Prompt fine-tuned model"
SYSTEM_PROMPT = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}"
USER_PROMPT = "What is the total trade value and average price for each trader and stock in the trade_history table?"
SQL_SCHEMA = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);"
BASE_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
FT_MODEL_NAME = "bstraehle/Meta-Llama-3.1-8B-Instruct-text-to-sql"
DATASET_NAME = "gretelai/synthetic_text_to_sql"
def process(action, base_model_name, ft_model_name, dataset_name, system_prompt, user_prompt, sql_schema):
#raise gr.Error("Please clone and bring your own credentials.")
if action == ACTION_1:
result = prompt_model(base_model_name, system_prompt, user_prompt, sql_schema)
elif action == ACTION_2:
result = fine_tune_model(base_model_name, dataset_name)
elif action == ACTION_3:
result = prompt_model(ft_model_name, system_prompt, user_prompt, sql_schema)
return result
def fine_tune_model(model_name, dataset_name):
# Load dataset
dataset = load_dataset(dataset_name)
print("### Dataset")
print(dataset)
print("###")
# Load model
model, tokenizer = load_model(model_name)
print("### Model")
print(model)
print("### Tokenizer")
print(tokenizer)
print("###")
# Pre-process dataset
def preprocess(examples):
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
return model_inputs
dataset = dataset.map(preprocess, batched=True)
print("### Pre-processed dataset")
print(dataset)
print("###")
# Split dataset into training and validation sets
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
print("### Training dataset")
print(test_dataset)
print("### Validation dataset")
print(test_dataset)
print("###")
# Configure training arguments
training_args = Seq2SeqTrainingArguments(
output_dir="./results",
logging_dir="./logs",
num_train_epochs=1,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
eval_strategy="steps",
save_total_limit=2,
save_steps=500,
eval_steps=500,
warmup_steps=500,
weight_decay=0.01,
metric_for_best_model="accuracy",
greater_is_better=True,
load_best_model_at_end=True,
push_to_hub=True,
save_on_each_node=True,
)
print("### Training arguments")
print(training_args)
print("###")
# Create trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
compute_metrics=lambda pred: {"accuracy": torch.sum(pred.label_ids == pred.predictions.argmax(-1))},
)
print("### Trainer")
print(trainer)
print("###")
# Train model
#trainer.train()
def prompt_model(model_name, system_prompt, user_prompt, sql_schema):
pipe = pipeline("text-generation",
model=model_name,
device_map="auto",
max_new_tokens=1000)
messages = [
{"role": "system", "content": system_prompt.format(schema=sql_schema)},
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": ""}
]
output = pipe(messages)
result = output[0]["generated_text"][-1]["content"]
print("###")
print(result)
print("###")
return result
def load_model(model_name):
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
#tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer = model.tokenizer
if not tokenizer.pad_token:
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
demo = gr.Interface(fn=process,
inputs=[gr.Radio([ACTION_1, ACTION_2, ACTION_3], label = "Action", value = ACTION_3),
gr.Textbox(label = "Base Model Name", value = BASE_MODEL_NAME, lines = 1),
gr.Textbox(label = "Fine-Tuned Model Name", value = FT_MODEL_NAME, lines = 1),
gr.Textbox(label = "Dataset Name", value = DATASET_NAME, lines = 1),
gr.Textbox(label = "System Prompt", value = SYSTEM_PROMPT, lines = 2),
gr.Textbox(label = "User Prompt", value = USER_PROMPT, lines = 2),
gr.Textbox(label = "SQL Schema", value = SQL_SCHEMA, lines = 2)],
outputs=[gr.Textbox(label = "Prompt Completion", value = os.environ["OUTPUT"])])
demo.launch()