|
import gradio as gr |
|
import torch |
|
import pandas as pd |
|
from datasets import Dataset, load_dataset |
|
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model |
|
from transformers import (AutoTokenizer, BitsAndBytesConfig, TrainingArguments, AutoModelForSequenceClassification, Trainer, EarlyStoppingCallback, DataCollatorWithPadding) |
|
import bitsandbytes as bnb |
|
import evaluate |
|
import numpy as np |
|
import random |
|
|
|
def process(model, dataset): |
|
dataset_imdb = load_dataset(dataset) |
|
return "Done" |
|
|
|
demo = gr.Interface(fn=process, inputs=["model", "dataset"], outputs="text") |
|
demo.launch() |