# Matlplotlib chart # Multimodal input # File search # Function: Tavily API # https://platform.openai.com/playground/assistants # https://platform.openai.com/docs/api-reference/assistants/createAssistant # https://platform.openai.com/docs/assistants/tools/code-interpreter # https://cookbook.openai.com/examples/assistants_api_overview_python import gradio as gr import datetime, openai, os, time from openai import OpenAI from utils import show_json client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) assistant, thread = None, None def create_assistant(client): assistant = client.beta.assistants.create( name="Python Code Generator", instructions=( "You are a Python programming language expert that " "generates Pylint-compliant code and explains it. " "Only execute code when explicitly asked to." ), model="gpt-4o", tools=[ {"type": "code_interpreter"}, {"type": "file_search"}, ], ) show_json("assistant", assistant) return assistant def load_assistant(client): assistant = client.beta.assistants.retrieve("asst_kjO8BRHMREWBlY0LQ7WECfeD") show_json("assistant", assistant) return assistant def create_thread(client): thread = client.beta.threads.create() show_json("thread", thread) return thread def create_message(client, thread, msg): print(msg) message = client.beta.threads.messages.create( role="user", thread_id=thread.id, content=msg.text, ) show_json("message", message) return message def create_run(client, assistant, thread): run = client.beta.threads.runs.create( assistant_id=assistant.id, thread_id=thread.id, ) show_json("run", run) return run def wait_on_run(client, thread, run): while run.status == "queued" or run.status == "in_progress": run = client.beta.threads.runs.retrieve( thread_id=thread.id, run_id=run.id, ) time.sleep(0.25) show_json("run", run) return run def get_run_steps(client, thread, run): run_steps = client.beta.threads.runs.steps.list( thread_id=thread.id, run_id=run.id, order="asc", ) show_json("run_steps", run_steps) return run_steps def get_run_step_details(run_steps): for step in run_steps.data: step_details = step.step_details show_json("step_details", step_details) def get_messages(client, thread): messages = client.beta.threads.messages.list( thread_id=thread.id ) show_json("messages", messages) return messages def extract_content_values(data): content_values = [] for item in data.data: for content in item.content: if content.type == "text": content_values.append(content.text.value) return content_values def chat(message, history): if not message: raise gr.Error("Message is required.") global client, assistant, thread if assistant == None: assistant = load_assistant(client) if thread == None or len(history) == 0: thread = create_thread(client) create_message(client, thread, message) run = create_run(client, assistant, thread) run = wait_on_run(client, thread, run) run_steps = get_run_steps(client, thread, run) get_run_step_details(run_steps) messages = get_messages(client, thread) content_values = extract_content_values(messages) print("###") print(content_values[0]) print("###") return content_values[0] gr.ChatInterface( fn=chat, chatbot=gr.Chatbot(height=350), textbox=gr.MultimodalTextbox(placeholder="Ask anything", container=False, scale=7), title="Python Code Generator", description="The assistant can generate code, explain, fix, optimize, document, test, and generally help with code. It can also execute code.", examples=[ [{"text": "Generate: NumPy/Pandas/Matplotlib & yfinance trading app", "files": []}], [{"text": "Explain: r\"^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\\W]).{8,}$\"", "files": []}], [{"text": "Fix: x = [5, 2, 1, 3, 4]; print(x.sort())", "files": []}], [{"text": "Optimize: x = []; for i in range(0, 10000): x.append(i)", "files": []}], [{"text": "Execute: First 25 Fibbonaci numbers", "files": []}], [{"text": "Execute: Chart showing stock gain YTD for NVDA, MSFT, AAPL, and GOOG, x-axis is 'Day' and y-axis is 'YTD Gain %'", "files": []}], ], cache_examples=True, multimodal=True, ).launch()